zl程序教程

您现在的位置是:首页 >  系统

当前栏目

2021年春季学期-信号与系统-第三次作业参考答案-第八道题

系统 2021 信号 作业 春季 参考答案 学期 第三次
2023-09-11 14:15:21 时间


本文是 2021年春季学期-信号与系统-第三次作业参考答案 中的参考答案。

 

▌第八道题


8. 某LTI系统,输入信号 e ( t ) = 2 e − 3 t u ( t ) e\left( t \right) = 2e^{ - 3t} u\left( t \right) e(t)=2e3tu(t),在该输入下的响应为: r ( t ) r\left( t \right) r(t),即: r ( t ) = H [ e ( t ) ] r\left( t \right) = H\left[ {e\left( t \right)} \right] r(t)=H[e(t)]

又已知:

H [ d d t e ( t ) ] = − 3 r ( t ) + e − 2 t u ( t ) H\left[ {{d \over {dt}}e\left( t \right)} \right] = - 3r\left( t \right) + e^{ - 2t} u\left( t \right) H[dtde(t)]=3r(t)+e2tu(t)

求该系统的单位冲击响应 h ( t ) h\left( t \right) h(t)

※ 第8题为思考题。

 

▌求解


1.第一种求解方法

由于 r ′ ( t ) = − 3 r ( t ) + e − 2 t u ( t ) r'\left( t \right) = - 3r\left( t \right) + e^{ - 2t} u\left( t \right) r(t)=3r(t)+e2tu(t)

即: e ′ ( t ) ∗ h ( t ) = − 3 e ( t ) ∗ h ( t ) + e − 2 t u ( t ) e'\left( t \right) * h\left( t \right) = - 3e\left( t \right) * h\left( t \right) + e^{ - 2t} u\left( t \right) e(t)h(t)=3e(t)h(t)+e2tu(t)

e ( t ) = 2 e − 3 t u ( t ) e\left( t \right) = 2e^{ - 3t} u\left( t \right) e(t)=2e3tu(t)代入上式,有:

[ − 6 e − 3 t u ( t ) + 2 e − 3 t δ ( t ) ] ∗ h ( t ) = − 6 e − 3 t u ( t ) ∗ h ( t ) + e − 2 t u ( t ) \left[ { - 6e^{ - 3t} u\left( t \right) + 2e^{ - 3t} \delta \left( t \right)} \right] * h\left( t \right) = - 6e^{ - 3t} u\left( t \right) * h\left( t \right) + e^{ - 2t} u\left( t \right) [6e3tu(t)+2e3tδ(t)]h(t)=6e3tu(t)h(t)+e2tu(t)

从而得到: 2 δ ( t ) ∗ h ( t ) = e − 2 t u ( t ) 2\delta \left( t \right) * h\left( t \right) = e^{ - 2t} u\left( t \right) 2δ(t)h(t)=e2tu(t)

则: h ( t ) = 1 2 e − 2 t u ( t ) h\left( t \right) = {1 \over 2}e^{ - 2t} u\left( t \right) h(t)=21e2tu(t)

 

2.第二种求解方法

由于 r ( t ) = e ( t ) ∗ h ( t ) r\left( t \right) = e\left( t \right) * h\left( t \right) r(t)=e(t)h(t),而且: − 3 r ( t ) + e − 2 t u ( t ) = d e ( t ) d t ∗ h ( t ) = d r ( t ) d t - 3r\left( t \right) + e^{ - 2t} u\left( t \right) = {{de\left( t \right)} \over {dt}} * h\left( t \right) = {{dr\left( t \right)} \over {dt}} 3r(t)+e2tu(t)=dtde(t)h(t)=dtdr(t)

所以可以得到一下微分方程: d r ( t ) d t + 3 r ( t ) = e − 2 t u ( t ) {{dr\left( t \right)} \over {dt}} + 3r\left( t \right) = e^{ - 2t} u\left( t \right) dtdr(t)+3r(t)=e2tu(t)

此微分方程的齐次解: r h ( t ) = A ⋅ e − 3 t ,    t > 0 r_h \left( t \right) = A \cdot e^{ - 3t} ,\,\,t > 0 rh(t)=Ae3t,t>0

特解: r p ( t ) = B ⋅ e − 2 t ,    t > 0 r_p \left( t \right) = B \cdot e^{ - 2t} ,\,\,t > 0 rp(t)=Be2t,t>0

将特解代入微分方程,有: − 2 B e − 2 t + 3 B e − 2 t = e − 2 t - 2Be^{ - 2t} + 3Be^{ - 2t} = e^{ - 2t} 2Be2t+3Be2t=e2t,从而可得: B = 1 B = 1 B=1

由于 r ( t ) r\left( t \right) r(t)是零状态响应,而且方程右端没有冲激项(没有奇异函数),所以 r ( 0 + ) = r ( 0 − ) r\left( {0_ + } \right) = r\left( {0_ - } \right) r(0+)=r(0)。由此条件代入: r ( t ) = A e − 3 t + e − 2 t r\left( t \right) = Ae^{ - 3t} + e^{ - 2t} r(t)=Ae3t+e2t。可以求得: A = − 1 A = - 1 A=1。则: r ( t ) = ( − e − 3 t + e − 2 t ) u ( t ) r\left( t \right) = \left( { - e^{ - 3t} + e^{ - 2t} } \right)u\left( t \right) r(t)=(e3t+e2t)u(t)

将上式 r ( t ) r\left( t \right) r(t)代入前面的方程,可得: ( − e − 3 t + e − 2 t ) u ( t ) = e ( t ) ∗ h ( t ) = 2 e − 3 t u ( t ) ∗ h ( t ) \left( { - e^{ - 3t} + e^{ - 2t} } \right)u\left( t \right) = e\left( t \right) * h\left( t \right) = 2e^{ - 3t} u\left( t \right) * h\left( t \right) (e3t+e2t)u(t)=e(t)h(t)=2e3tu(t)h(t)

引入微分算则,求解该卷积方程: ( 1 p + 2 − 1 p + 3 ) δ ( t ) = 2 p + 3 δ ( t ) ∗ h ( t ) \left( {{1 \over {p + 2}} - {1 \over {p + 3}}} \right)\delta \left( t \right) = {2 \over {p + 3}}\delta \left( t \right) * h\left( t \right) (p+21p+31)δ(t)=p+32δ(t)h(t)

两边同乘以: 1 2 ( p + 3 ) {1 \over 2}\left( {p + 3} \right) 21(p+3)

h ( t ) = 1 2 ⋅ 1 p + 2 δ ( t ) h\left( t \right) = {1 \over 2} \cdot {1 \over {p + 2}}\delta \left( t \right) h(t)=21p+21δ(t)即: h ( t ) = 1 2 e − 2 t u ( t ) h\left( t \right) = {1 \over 2}e^{ - 2t} u\left( t \right) h(t)=21e2tu(t)

 

※ 附录


■ 相关文献链接: