zl程序教程

您现在的位置是:首页 >  后端

当前栏目

头秃警告,五个顶级算法大佬创造的算法究竟有多牛逼?

算法 究竟 警告 创造 顶级 大佬 五个
2023-06-13 09:11:30 时间

作者 | 梁唐

大家好,我是梁唐。

熟悉Python的同学可能知道,在Python当中我们可以使用heapq这个库在O(n\log n) 的时间内筛选出前K大或者是前K小的元素,我们在之前的文章当中也曾讨论过。这种快速筛选元素的算法称为快速选择算法。

如果你看过之前的归并、分治法的文章,相信看懂这篇文章也并不困难。如果没有的话,建议先回顾一下之前的文章。

思维推导

我们现在知道了算法的目的,即快速地找出最大或最小的若干个元素,不知道的是算法的原理。

在我们查阅正确做法之前,不妨试着自己来推导一下,看看能不能不看答案自己把算法的原理和逻辑推导出来。这其实才是算法能力的精髓,即是应用已知能力解决未知问题的能力。

假设当下我们并不知道正确的解法是什么,我们想要尽可能快地找到前K大的元素。如果一个一个找这个过程会很慢,除非我们可以做到O(1) 的查找。

显然这是不可能的,因为即使是平衡树这类快速查找的数据结构,单次查找也需要O(logn) 。所以一个一个找是不行的。那么就只剩下一批一批找,批量查找又有两种,一种是直接查找K个,还有一种是多次查找,最后得到正解。

我们并不知道哪种方法更靠谱,但是第一种看起来不太可行,因为它就是问题本身,第二种方法看起来稍微可行一些。在这个问题下,我们并没有多余的信息,想要直接查找K个元素应该不太容易。所以可能通过多次查找得到解是比较好的方法。多次查找也可以简单分为两种情况,一种是每次查找一批,最后合并在一起,还有一种是每次缩小查找的范围,最后锁定答案。

到这里,如果你对分治算法熟悉的话,你会觉得它和分治算法的应用场景很相似。我们想要求解一个比较大的问题,但是直接求解很困难,所以我们将它拆解,将大问题拆解成小问题,通过对小问题的解决来搞定原本的大问题。

我们目前比较熟悉的分治算法好像只有归并排序和快速排序这两个,我们可以试着把这两个算法往这个问题上套。

归并排序核心思路是每次将数组一分为二,然后通过这两个数组归并的过程找到我们想要的解法。这个方案可行,但是和排序并没有区别。我们文章开头就已经说过了,我们想要寻找的是比排序更快的算法。

再看快排,它每次是设置一个标杆,然后对数组当中的元素进行调整,保证比标杆小的元素都在它的左边,比它大的都在它的右边。标杆最后在的位置就是数据有序之后它正确的位置。这个方法好像和我们想要的很接近。

于是,我们就这样顺藤摸瓜,找到了正确的方法。当然实际的思考过程可能要比这个复杂,考虑的情况也会更多,但是总体的思维推导过程应该是差不多的。

同样是解题,新手往往靠灵光一闪,而高手都是有一个完整的思维链。很多算法问题看起来一头雾水,但其实是有迹可循的。训练出一个思维模型来寻找正确的解法是新手通往高手的必经之路,也是算法能力的核心。

算法原理

我们来仔细分析一下,一次快速排序的调整之后,我们可以确定标杆的位置,这样一来就有三种情况。

第一种,它所在的位置刚好是K,说明它前面的这一段数组就是答案,直接返回即可。如果它小于K,说明这个标杆取小了,我们应该在它右侧的数组当中重新选择一个标杆。如果它小于K说明这个标杆取大了,我们可以直接它右侧的元素,因为它右侧的元素一定不在答案里。

我们可以参考一下下面这张图:

img

思路有了,代码就不难写了:

def quick_select_without_optimizer(arr, k):
    n = len(arr)
    # 如果k大于n,没啥好说的,直接返回
    if k >= n:
        return arr

    # 缓存
    buffer = []
    while arr:
        # 选择最后一个元素作为标杆
        mark = arr.pop()
        less, greater = [], []
        # 遍历数组,将元素分为less和greater
        for x in arr:
            if x <= mark:
                less.append(x)
            else:
                greater.append(x)
        # 判断三种情况,如果相等直接返回
        if len(less) == k:
            return buffer + less
        # 如果小于,将less存入buffer,因为它一定是答案的一部分,可以简化计算
        elif len(less) < k:
            buffer += less
            # k要减去less的长度
            k -= len(less)
            arr = [mark] + greater
        else:
            # 如果大于,直接舍弃右边
            arr = less

复杂度分析

写完了代码,我们来分析一下算法的复杂度。有些同学可能会有些疑惑,这个算法和快排基本上一样,为什么会更快呢?

这是因为我们每次迭代的过程中,数组都会被舍弃一部分,我们把完整的搜索树画出来大概是下面这个样子。

可以看到,虽然总的迭代次数还是log_2n次,但是每一层当中遍历的元素个数不再是n。我们假设每次迭代数组的长度都会折损一半,到数组长度等于1的时候结束。我们把每一层遍历的长度全部相加,就得到了一个等比数列:1, 2, 4, \cdots, n

这个等比数列的长度是log_2n ,我们套用等比数列求和公式:

\displaystyle S=\frac{a_1(1-q^n))}{1-q}=\frac{1(1-2n)}{1-2}\approx 2n

也就是说虽然它的形式看起来和快排很接近,但是由于我们在遍历的过程当中,每次都会缩小遍历的范围,所以整体的复杂度控制在了O(n) 。当然这也只是理想情况下的复杂度,一般情况下随着数据分布的不同,实际的复杂度也会稍有浮动。可以理解成乘上了一个浮动的常数。

之前我们分析快排的时候曾经得出过结论,如果原始数组是逆序的,那么快排的复杂度会退化到O(n^2) 。我们当前的快速选择算法和快排算法几乎如出一辙,整个的思路是一样的,也就是说,在数组是逆序的情况下同样会遇到复杂度降级的问题。不过好在这个问题并不是不可解的,我们下面就来分析一下关于这种情况的优化。

优化探索

优化目标很明显,就是极端情况下复杂度会出现降级的情况。问题出现的原因也已经知道了,是由于数组逆序,并且我们默认选择最后一个元素作为标杆。所以想要解决这个问题的入手点就有两个,一个是数组逆序的情况,一个是标杆的选择。

相比于标杆的选择来说,数组逆序情况的判断不太可取。因为对于不是严格逆序的数组,也一样可能出现复杂度很大的情况。如果我们通过逆序数来判断数组的逆序程度,又会带来额外的开销,所以只能从标杆的选择入手。之前我们默认选择最后一个元素,其实这并不是元素位置的问题,无论选择什么样的位置,都有可能出现对应的极端情况使得复杂度升级,所以简单地改变选择的位置是不能解决问题的,我们需要针对这个问题单独设计算法。

一个比较简单的思路是我们可以选择首尾和中间三个位置的元素,然后选择其中第二大的元素作为标杆。这种方案实现简单,效果也不错,但是分析一下的话,其实没有从根本上解决问题,因为依然还是可能出现极端情况,比如首尾和中间刚好是三个最大的元素。虽然这个概率比单个元素出现最大降低了很多。还有一个问题是,这样选出来的标杆不能保证分割出来的数组是平衡的。

BFPRT算法

这里要给大家介绍一个牛哄哄的算法,说它牛不是因为它很难,而是因为它真的很牛。它的名字叫BFPRT,是由Blum、Floyd、Pratt、Rivest、Tarjan五位大牛一起发明的。如果你读过《算法导论》的话,一定会找到其中好几个人的名字。该算法可以找到一个比较合适的标杆,用来在快排和快速选择的时候切分数组。

算法的流程很简单,一共只有几个步骤:

  1. 判断数组元素是否大于5,如果小于5,对它进行排序,并返回数组的中位数
  2. 如果元素大于5个,对数组进行分组,每5个元素分成一组,允许最后一个分组元素不足5个。
  3. 对于每个分组,对它进行插入排序
  4. 选择出每个分组排序之后的中位数,组成新的数组
  5. 重复以上操作

算法思路很朴素,其实就是一个不断选择中位数的过程。

我们先来证明它的正确性,我们假设最终选出来的数是x,一个长度为n的数组会产生n/5个分组。由于我们取的是中位数的中位数,所以在这n/5个分组当中,有一半的中位数小于x,还有一半大于x。在中位数大于它的分组当中至少有3个元素大于等于它,所以整体而言,至少有 n/10 * 3 = 0.3n的元素大于等于x,同理也可以证明有30%元素小于等于x。所以最坏的情况选出来的x是70%位置的数。

根据BFPRT算法的定义很容易写出代码:

def bfprt(arr, l=None, r=None):
    if l is None or r is None:
        l, r = 0, len(arr)
    length = r - l
    # 如果长度小于5,直接返回中位数
    if length <= 5:
        arr[l: r] = insert_sort(arr[l: r])
        return l + length // 2
    medium_num = l
    start = l
    # 否则每5个数分组
    while start + 5 < r:
        # 对每5个数进行插入排序
        arr[start: start + 5] = insert_sort(arr[start: start + 5])
        arr[medium_num], arr[start + 2] = arr[start + 2], arr[medium_num]
        medium_num += 1
        start += 5
    # 特殊处理最后不足5个的情况
    if start < r:
        arr[start:r] = insert_sort(arr[start:r])
        _l = r - start
        arr[medium_num], arr[start + _l // 2] = arr[start + _l // 2], arr[medium_num]
        medium_num += 1
    # 递归调用,对中位数继续求中位数
    return bfprt(arr, l, medium_num)

这个代码写出来了之后,剩下的就容易了,改动量并不大,只需要加上两行即可:

def quick_select(arr, k):
    n = len(arr)
    if k >= n:
        return arr

    # 获取标杆的下标
    mark = bfprt(arr)
    arr[mark], arr[-1] = arr[-1], arr[mark]
    buffer = []

    while arr:
        mark = arr.pop()
        less, greater = [], []
        for x in arr:
            if x <= mark:
                less.append(x)
            else:
                greater.append(x)
        if len(less) == k:
            return buffer + less
        elif len(less) < k:
            k -= len(less)
            buffer += less
            arr = [mark] + greater
        else:
            arr = less

看代码的话和上面基本上没有什么差别,唯一的不同就是选择之前先获取了一下标杆。在这里我只是在一开始的时候调用了一次,当然也可以在while循环里每一次都调用,不过我个人觉得没什么必要,因为在获取标杆的时候,会将数组全部打乱,足够避免极端情况了。

今天的文章篇幅有点长,但内容还可以,尤其是BFPRT算法,真的是非常经典,算得上是不复杂但是很巧妙了。感兴趣的同学可以了解一下它背后五个大佬的故事,估计比我的文章精彩得多。