zl程序教程

您现在的位置是:首页 >  其它

当前栏目

红黑树、B树、B+树各自适用的场景

场景 适用 红黑树 各自
2023-09-14 09:07:22 时间

a27ceadce3be9dee6694ea01c37aff52.png


1. 磁盘基础知识

  • 分页:

现代操作系统都使用虚拟内存来印射到物理内存,内存大小有限且价格昂贵,所以数据的持久化是在磁盘上。虚拟内存、物理内存、磁盘都使用页作为内存读取的最小单位。一般一页为4KB(8个扇区,每个扇区125B,8*125B=4KB)。

  • 局部性原理:

  1. 当一个数据被用到时,其附近的数据也通常会马上被使用。

  2. 程序运行期间所需要的数据通常比较集中。

  • 磁盘预读原理:

磁盘读取依靠的是机械运动,分为寻道时间、旋转延迟、传输时间三个部分,这三个部分耗时相加就是一次磁盘IO的时间,大概 9ms 左右。这个成本是访问内存的十万倍左右;

磁盘读取的速度远小于内存,所以尽量减少 I/O 次数是提高效率的关键。

根据局部性原理,且由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),所以即使只需要读取一个字节,磁盘也会读取一页的数据。即磁盘预读时通常会读取页的整倍数。

2. 树基础知识回顾

排序二叉树:左 < 跟 < 右 B 树:有序数组 + 多叉平衡树,节点存储关键字、数据、指针;B+ 树:有序数组链表 + 多叉平衡树,非叶子节点存储指针、关键字,不存储数据;红黑树:红黑树是一种不大严格的平衡树(平衡树要求太高)

平衡树是为了防止二叉查找树退化为链表,而红黑树在维持平衡以确保 O(log2(n)) 的同时,不需要频繁着调整树的结构;

二叉树的存储结构

  1. 顺序存储(适用于完全二叉树)

7ef841a1ef9b24a9d98209f6e23b44d0.png

index 之间的对应关系:

7147803bf35ac6e168cfd6e256f5a02e.png

注意:二叉树的顺序存储只适合存储完全二叉树,否则 index 无法和节点对应起来,会有点恶心:

9647b24a531cb0febc7ef1947ec018b8.png

  1. 链式存储

0b3d1473222c35ffbab92aab386cdd0d.png

这里要好好理解一下,不然会影响后面的理解。

3. 为什么不能使用二叉树来存储数据库索引

先说结论:

  1. 平衡二叉树进行插入/删除时,大概率需要通过左旋/右旋来维持平衡;

  2. 旋转需要加载整个树,频繁旋转效率低;

  3. 二叉树的 I/O 次数近似为 O(log2(n));

  4. 范围查询时,二叉树的时间复杂度会退化成 O(n);

  5. 二叉树退化成链表时,时间复杂度也近似退化成了 O(n);

  6. 二叉树无法使用磁盘预读功能;

其实单论范围查询,在关系型数据库中就基本没有使用二叉树的可能了。但是为了加深对知识的了解,来看看其他的原因。

先剔除掉范围查询的情况,原因 1、2、6 可以通过红黑树来解决,那么其实就剩下 2 个原因:

  1. I/O 次数对比;

  2. 磁盘预读功能的利用;

4、二叉树的 I/O 次数分析

先说 I/O 次数:其实相比于二叉树,B 树、B+树, CPU 的运算次数并没有变化,甚至增多。但是 CPU 运算次数相比于 I/O 的消耗而言,可以忽略不计,所以 I/O 次数是评价一个数据库索引的效率高低的关键指标。

对于红黑树而言,其 I/O 次数近似为 log2(n),为什么是近似呢?

首先,索引是存储在磁盘上的,磁盘上的数据大部分情况下是连续的,但是随着增删改查的发生,有可能产生很多碎片,也就是说:

  • 索引在磁盘上的存储也不一定是连续的;

这里,严谨起见,我们来分两种情况:

  1. 索引节点,即树的节点在磁盘上存储是连续;

假设一个页能存储 5 个节点,假设二叉树如下:

ed982bda0b32c8d8845dbd17f2af2ea3.png

注意,序号只代表在磁盘中存储的顺序,不代表对应节点的关键字的值;

二叉树可能是链式存储,也可能是顺序存储。但是这里假设节点在磁盘上的存储是连续的,所以这里可以近似理解成顺序存储。即使是链式存储,无非就是 pNext 指针指向下一个连续的内存地址而已。

现在假设搜索的结果是最左边的叶子节点 16,因为磁盘预读的特性,加上一个页能存储 5 个节点,第一次 I/O :

d1a88925c73a20cb95ecc50ca732b12a.png

如上,第一次 I/O 就读取了 5 个节点,不仅把根节点读取进内存了,还把节点 2 和 4 都读取进去了,看上去还节约了两次 I/O ?好厉害的样子......

此时,会根据二分法查找,对比 1 号节点然后去找节点 2,紧接着找节点 4,因为这两个节点都在内存中了,所以不需要进行 I/O

这里再说一次,序号不代表节点的关键字,而是单纯的表示节点在磁盘中的排列顺序;

紧接着,会需要 8 号节点,而 8 不再内存中,所以进行第二次 I/O 同样是读取一页,即 5 个节点:

e072d31513d5756d6495ebac0838a94f.png

这次虽然也是读取了 5 个节点,但是实际上只有 8 号节点有实际作用,其他节点并没什么卵用(这是二叉树无法使用预读功能的本质),但是现在还没体现出劣势,现在对比之后需要 16 号节点,继续第三次读取:

fbb4943e52c84388ee69a09ad405fc80.png

此时找到了 16,并将结果返回。

这是高度为 4 的情况,且只有 31 个数据。但是实际使用中,怎么可能就 31 个数据?假设要找的是 32 号节点,因为 16 号节点之后的 17-20 虽然被加载进内存了,但是完全没用。那么就需要再进行一次 I/O 来加载 32 号节点所在的页,同时也会将 33-36 加载进内存,但是这些节点并无卵用。

如果要找的是 1000 ,10000?

所以,随着层级的深入,会出现:

  1. 一个页中只有一个节点有用(二分法查找要的是子节点而不是兄弟节点);

  2. I/O 次数近似等于log2(n);

即:

  1. 第一次 I/O 可能的优势在层级加深之后就没有了;

  2. 就算是红黑树,也只能将时间复杂度维持在 log2(n);

上述讨论的是索引树在磁盘上的存储是连续的,如果不是连续的,那么按页读取到的脏数据会更多,上述的情况中,前几次 I/O 读取到有用的数据的概率会变低,所以 I/O 的次数只会增多而不会减少,即仍然是近似于 log2(n)。

5. B/B+树

B 树即:多路平衡查找树。

B 树的巧妙之处在于:

  1. 将一个节点的大小设置为一页的大小;

  2. 一个节点可以存放多个关键字(多叉树);

  3. 自平衡;

这 3 点结合起来就可以做到:

  1. 一个节点大小为一页,被加载进内存时,这些关键字在进行对比,找出需要 leftChild 还是 rightChild 时,都是有用的(如最右侧时需要对比所有节点);

  2. 一个节点可以存储多个关键字,有效降低了树的高度;

B+ 树的巧妙之处在于:

  1. 非叶子节点不存储数据,进一步增大了一页中存储关键字的数量;

  2. 叶子节点中存储数据且存在指向下一页的链表指针,可以使用顺序查询(支持范围查询);

6. B/B+树的索引数量

B 树的节点中存储:指针、关键字(主键)、数据 B+ 树的非叶子节点:指针、关键字 B+树的叶子节点:指针(链表)、关键字、数据

注意,这里不是绝对的,比如有的 B+ 树中叶子节点存储的不是数据,而是指向数据的指针。查询到指针之后再去对应地址取出数据,但是这样应该会增加一次 I/O 吧,应该也是在数据量和 I/O 次数之间做了取舍,具体先不讨论。

以 Sqlite3.12 之后为例,page_size = 16k,假设指针为 8 byte,假设关键字类型占 8 byte,假设数据占 1 KB;

B 树的一个节点:

89128b5ae72e4173015e86d2f50a62b3.png

一页能存储的数据量为:16kb / (1KB+8byte+8byte) ≈ 16;

高度为 3 的 B 树能存储 16 x16 x16 = 4096 条数据

相比于二叉树的 1 个而言,确实有效降低了树的层级。而且上述是假设数据为 1KB,如果数据没那么大,高度为 3 的 B 树能存储更多的数据,但是如果用在大型数据库索引上还是不够。

B+ 树:

59f91587233ab154921dd9ea110c9a54.png

如上图,B+树的核心在于非叶子节点不存储数据。

这样做可以减少非叶子结点占用的空间,增大一页所能存储的数据量,最大程度减少树的层级。

仍然是以上假设,假如树的高度为 3 ,那么就有两层存储关键字+指针,一层叶子节点来存储实际数据。

一页能存储的关键字为:16 * 1024 / (8 + 8) = 1024 一页能存储的数据量为:16KB / (1KB + 8byte + 8byte) = 16 (这里计算不完全准确,实际情况应该是1页数据中只有一个链表指针指向下一页) 能存储的关键字为:1024 * 1024 = 1048576;

因为端节点又有 1024 个指针,这些指针可以指向一个页,页中存储数据,也就是叶子节点,一页能存储 16 个叶子节点,所以总共能索引的数据量为 1048576 * 16 ≈ 1600万;如果高度为 4 ,则再乘以 1024 约为 17亿.....

上述推理中,理解终端节点的指针指向一个页,页中存储着关键字 + 数据 + 链表指针是关键。page 标记如下,有助理解:

fdf008cce719054fcc59ee0eed29334d.png

虽然叶子节点很多,一个 page 对应一个叶子节点甚至是多个 page 才能存下一个叶子节点,但是这些是存在磁盘上的,找到对应的 page 之后才去加载对应的 page。索引超大数据量的同时,不会对 I/O 次数产生影响,这就是这个设计的牛逼之处。

但是这样也是有缺点的:

无论查询结果如何,都必须走到叶子节点才结束,也就是 I/O 次数固定为 O(h) 或者说是 log(n)(底数为节点子分支个数),这个 h 一般为 2-3,排除掉根节点常驻内存,高度为 3 的 B+ 树进行两次 I/O 就可以索引千万级别的数据,高度为 4 的 B+ 树,进行 3 次 I/O 就能索引十亿级别的数据量,这个效果还是很好的。

所以,这个缺点也可以说成是优点:稳定(稳如一条老狗🐶)

7. 实际应用

  • 红黑树优点

红黑树常用于存储内存中的有序数据,增删很快,内存存储不涉及 I/O 操作。

b29e918f1735da61b7fa077daf33024e.png

  • B/B+树的优点

更适合磁盘存储,减少了树的层级,进而减少 I/O 次数;

  • B 树和 B+ 树对比

都是 B 树,但是 B+树更适合范围查询,比如 Mysql,且查询次数很稳定,为 logn。而 B 树更适合键值对型的聚合数据库,比如 MongoDB,查询次数最优为 O(1);

红黑树更适合内存存储,B 树更适合键值对存储,B+ 树适合范围查询;

数据库:为什么使用B+树而不使用红黑树

B+树只有叶节点存放数据,其余节点用来索引,而B-树是每个索引节点都会有Data域。所以从Mysql(Inoodb)的角度来看,B+树是用来充当索引的,一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上。 

那么Mysql如何衡量查询效率呢?– 磁盘IO次数。B-树/B+树 的特点就是每层节点数目非常多,层数很少,目的就是为了就少磁盘IO次数,但是B-树的每个节点都有data域(指针),这无疑增大了节点大小,说白了增加了磁盘IO次数(磁盘IO一次读出的数据量大小是固定的,单个数据变大,每次读出的就少,IO次数增多,一次IO多耗时),而B+树除了叶子节点其它节点并不存储数据,节点小,磁盘IO次数就少。这是优点之一。 

另一个优点是:B+树所有的Data域在叶子节点,一般来说都会进行一个优化,就是将所有的叶子节点用指针串起来。这样遍历叶子节点就能获得全部数据,这样就能进行区间访问啦。在数据库中基于范围的查询是非常频繁的,而B树不支持这样的遍历操作。

B树相对于红黑树的区别

B树是多路树,红黑树是二叉树!红黑树一个节点只能存出一个值,B树一个节点可以存储多个值,红黑树的深度会更大,定位时 红黑树的查找次数会大一些。

AVL 树和红黑树基本都是存储在内存中才会使用的数据结构

在大规模数据存储的时候,红黑树往往出现由于树的深度过大造成磁盘IO读写过于频繁,进而导致效率低下的情况。为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写。磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读写。根据磁盘查找存取的次数往往由树的高度所决定,所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,B树可以有多个子女,从几十到上千,可以降低树的高度。

数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

为什么mysql用B+树做索引而不用B-树或红黑树

  B-树、B+树、红黑树,是平衡查找树,那么查询效率上讲,平均都是O(logn)。使用什么哪种数据结构,肯定是出于提高数据库的查询效率的考虑。

一、B+树做索引而不用B-树
  Mysql如何衡量查询效率呢?– 磁盘IO次数
  一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上。B-树/B+树 的特点就是每层节点数目非常多,层数很少,目的就是为了减少磁盘IO次数,但是B-树的每个节点都有data域(指针),这无疑增大了节点大小,说白了增加了磁盘IO次数(磁盘IO一次读出的数据量大小是固定的,单个数据变大,每次读出的就少,IO次数增多,一次IO多耗时),而B+树除了叶子节点其它节点并不存储数据,节点小,磁盘IO次数就少。

  优点一:B+树只有叶节点存放数据,其余节点用来索引,而B-树是每个索引节点都会有Data域。

  优点二:B+树所有的Data域在叶子节点,并且所有叶子节点之间都有一个链指针。这样遍历叶子节点就能获得全部数据,这样就能进行区间访问啦。在数据库中基于范围的查询是非常频繁的,而B树不支持这样的遍历操作。

B+树做索引而不用红黑树
  AVL 树(平衡二叉树)和红黑树(二叉查找树)基本都是存储在内存中才会使用的数据结构。在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况。为什么会出现这样的情况,要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写。磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读写。根据磁盘查找存取的次数往往由树的高度所决定,所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,B树可以有多个子女,从几十到上千,可以降低树的高度。

  数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

B-TREE索引

  B-TREE索引是使用最多的索引。很多存储引擎采用的都是B-TREE数据结构的变体实现该索引,例如InnoDB使用的是B+TREE,即每个叶子节点都包含指向下一个叶子节点的指针,从而方便叶子节点范围遍历。
  B-TREE中的所有值都是按顺序存储的,每个叶子页到根的距离相同。下图展示了InnoDB中的B-TREE索引是如何工作的:

  当查找一行记录时,存储引擎会先在索引中搜索。从索引的根节点开始,通过比较节点页的值和要查找的值逐层进入下层节点,最底层叶子节点的指针指向的是被索引的数据。这样的查找方式避免了全表扫描,加快访问数据的速度。此外因为B-Tree对索引列是顺序存储的,所以也很适合查找范围数据。
下面是一个使用B-Tree索引的例子,有如下数据表:5a71b01d834869b1300b254c6cfee131.png

b2364f5f0037157891ba932227bfcc1a.png

CREATE TABLE People (
    last_name varchar(50) not null,
    first_name varchar(50) not null,
    dob date not null,
    gender enum('m','f') not null,
    key(last_name,first_name,dob)
)

de843a3a1988d8c0175194d7243defd2.png

建表语句在last_name、first_name、dob列上建立了一个联合索引,下图展示了该索引的存储结构

180fb66ea254ebe2663ce77cea05d42d.png

  联合索引中的索引项会先根据第一个索引列进行排序,第一个索引列相同的情况下,会再按照第二个索引列进行排序,依次类推。根据这种存储特点,B-Tree索引对如下类型的查找有效:

  1. 全值匹配:查找条件和索引中的所有列相匹配

  2. 匹配最左前缀:查找条件只有索引中的第一列

  3. 匹配列前缀:只匹配某一列值的开头部分。这里并不一定只能匹配第一个索引列的前缀。例如在确定第一个索引列的值时,也可以在第二个索引列上匹配列前缀。在上面例子中,对于查找姓为Allen,名为J开头的人,也可以应用到索引。

  4. 匹配范围值,或者精确匹配某一列并范围匹配另外一列:例如查找姓在Allen和Barrymore之间的人,或者查找姓为Allen,名字在某一个范围内的人。

  5. 只访问索引的查询,即要查询的值在索引中都包含,只需要访问索引就行了,无需访问数据行。这种索引被称作覆盖索引。

  6. 对于上面列出的查询类型,索引除了可以用来查询外,还可以用来排序。

下面是B-Tree索引的一些限制:

  1. 如果不是从索引的最左列开始查找,则无法使用索引。例如直接查找名字为Bill的人,或查找某个生日的人都无法应用到上面的索引,因为都跳过了索引的第一个列。此外查找姓以某个字母结尾的人,也无法使用到上面的索引。

  2. 不能在中间跳过索引中的某个列,例如不能查找姓为Smith,生日为某个特定日期的类。这样的查询只能使用到索引的第一列

  3. 如果查询中有某个列的范围查询,则该列右边的所有列都无法使用索引优化查找。例如有查询WHERE last_name='Smith' AND first_name LIKE 'J%' AND dob='1976-12-23',这个查询只能使用到索引的前两列,而不能使用整个索引。

数据结构:内存操作红黑树快,磁盘操作B树或者B+树快

B+树的高度要比红黑树小,有效减少了磁盘的随机访问;
B+树的数据节点相互临近,能够发挥磁盘顺序读取的优势(缓存);
B+树的数据全部存于叶子结点,而其他节点产生的浪费在经济负担上能够接受,红黑树存储浪费小;

红黑树常用于存储内存中的有序数据,增删很快B+树常用于文件系统和数据库索引。

红黑树只能有2个子节点;

B树子节点大于2,子节点树多这一特点保证了存储相同大小的数据,树的高度更小,数据局部更加紧凑,而硬盘读取有局部加载的优化(把要读取数据和周围的数据一起预先读取),b树相邻数据物理上更加紧凑这一特点符合硬盘进行IO优化的特性。

B+树在b树基础上进一步将数据只存在叶子节点,非叶子节点不存值只存储关键字或者键值和值的指向,而且叶子节点前后相连放入链表中。使得数据更加紧凑有序,只需要链表(叶子节点)的一次遍历就能获取所有树上的值。

B-树(B树)和B+树的区别

(1)B+树查询时间复杂度固定是logn,B-树查询复杂度最好是 O(1)。

(2)B+树相邻接点的指针可以大大增加区间访问性,可使用在范围查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。

(3)B+树更适合外部存储,也就是磁盘存储。由于内节点无 data 域,每个节点能索引的范围更大更精确。

总之,B-树每个节点即保存数据又保存索引,所以磁盘IO的次数很少;B+树只有叶子节点保存,磁盘IO多,但是区间访问比较好。

所以:

MongoDB使用B-树,所有节点都有Data域,只要找到指定索引就可以进行访问,无疑单次查询平均快于Mysql

Mysql作为一个关系型数据库,数据的关联性是非常强的,区间访问是常见的一种情况B+树由于数据全部存储在叶子节点,并且通过指针串在一起,这样就很容易的进行区间遍历甚至全部遍历。