zl程序教程

您现在的位置是:首页 >  后端

当前栏目

基础篇:数据挖掘的聚类算法和优势

算法基础 优势 数据挖掘 聚类
2023-09-14 09:02:09 时间
比较分类算法的话,大概考虑这几个维度:时间空间复杂度,鲁棒性,参数敏感性,处理不规则形状,适合的类数量,类间差异(范围大小,样本个数,形状差异) 可以参照一下sklearn网站给出的列表:2.3. Clustering
除了这些聚类方法以外,统计老师讲过一些传统的聚类方法,归属于系统聚类的范畴,先定义观测间的距离和类之间的距离计算方法
数据挖掘

文|十方

比较分类算法的话,大概考虑这几个维度:时间空间复杂度,鲁棒性,参数敏感性,处理不规则形状,适合的类数量,类间差异(范围大小,样本个数,形状差异)

可以参照一下sklearn网站给出的列表:2.3. Clustering

数据挖掘

数据挖掘

除了这些聚类方法以外,统计老师讲过一些传统的聚类方法,归属于系统聚类的范畴,先定义观测间的距离和类之间的距离计算方法,然后按照距离把最接近的两个观测(类)合并,直到合并成一个大类为止。

最短距离法:

类间距为两类中最近观测的距离。
不限制类形状,对拉长的分布效果好,会删除边缘的观测点

最长距离法:

类间距为两类中最远观测的距离。
倾向于产生直径相等的类,易受异常值影响。

中间距离法:

类间距为最长距、最短距、类内距离的加权。

重心法:

类间距为两类重心之间的距离
对奇异值稳健

类平均法:

类间距为两类观测之间距离的平均值。
倾向于先合并方差小的类,偏向于产生方差相同的类。

离差平方和法:

将合并后类内方差最小的两类合并
倾向于产生数量相等的两类,对异常值敏感

密度估计:

较远的距离设为无穷。较近的两个样本,距离与局部密度成反比。
适用于不规则形状类,不适用样本数太少。

两阶段密度估计:

用密度估计计算距离,再用最短距离法聚类。
普适性较强

除了以上这些常见方法,值得一提的是去年发在science上的算法 fast search and find of density peaks. 这个方法克服了DBSCAN中不同类的密度差别大,邻域范围难以设定的问题,非常鲁棒,看起来棒棒的。

ps:如果希望聚的效果好,距离度量方法有时候比聚类方法更重要。



Python数据挖掘与机器学习,快速掌握聚类算法和关联分析 前文数据挖掘与机器学习技术入门实战与大家分享了分类算法,在本文中将为大家介绍聚类算法和关联分析问题。分类算法与聚类到底有何区别?聚类方法应在怎样的场景下使用?如何使用关联分析算法解决个性化推荐问题?本文就为大家揭晓答案。
     K-MEANS顾名思义K-均值,通过计算一类记录的均值来代表该类,但是受异常值或极端值的影响比较大,这里介绍另外一种算法K-medodis。看起来和K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值,在  K-medoids算法中,我们将从当前cluster  中选取这样一个点——它到其他所有(当前cluster中的)点的距离之和最小——作为中心点。