zl程序教程

您现在的位置是:首页 >  其他

当前栏目

Scalaz(58)- scalaz-stream: fs2-并行运算示范,fs2 parallel processing详解编程语言

编程语言 详解 运算 stream 并行 Parallel 示范 Scalaz
2023-06-13 09:20:38 时间

    从表面上来看,Stream代表一连串无穷数据元素。一连串的意思是元素有固定的排列顺序,所以对元素的运算也必须按照顺序来:完成了前面的运算再跟着进行下一个元素的运算。这样来看,Stream应该不是很好的并行运算工具。但是,fs2所支持的并行运算方式不是以数据元素而是以Stream为运算单位的:fs2支持多个Stream同时进行运算,如merge函数。所以fs2使Stream的并行运算成为了可能。

一般来说,我们可能在Stream的几个状态节点要求并行运算:

1、同时运算多个数据源头来产生不排序的数据元素

2、同时对获取的一连串数据元素进行处理,如:map(update),filter等等

3、同时将一连串数据元素无序存入终点(Sink)

我们可以创建一个例子来示范fs2的并行运算:模拟从3个文件中读取字串,然后统计在这3个文件中母音出现的次数。假设文件读取和母音统计是有任意时间延迟的(latency),我们看看如何进行并行运算及并行运算能有多少效率上的提升。我们先设定一些跟踪和模拟延迟的帮助函数:

1 def log[A](prompt: String): Pipe[Task,A,A] = _.evalMap { a = Task.delay{ println(s"$prompt "); a }} 

2 // log: [A](prompt: String)fs2.Pipe[fs2.Task,A,A] 

3 def randomDelay[A](max: FiniteDuration): Pipe[Task,A,A] = _.evalMap { a = 

4 val delay: Task[Int] = Task.delay { scala.util.Random.nextInt(max.toMillis.toInt) } 

5 delay.flatMap {d = Task.now(a).schedule(d.millis) } 

6 } // randomDelay: [A](max: scala.concurrent.duration.FiniteDuration)fs2.Pipe[fs2.

log是个跟踪函数,randomDelay是个延迟模拟函数,模拟在max内的任意时间延迟。

与scalaz-stream-0.8不同,fs2重新实现了文件操作功能:不再依赖java的字串(string)处理功能。也不再依赖scodec的二进制数据转换功能。下面是fs2的文件读取方法示范:

1 val s1 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicBackend.scala"),1024) 

2 // s1 : fs2.Stream[fs2.Task,Byte] = evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ) 

3 val s2 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/DatabaseConfig.scala"),1024) 

4 // s2 : fs2.Stream[fs2.Task,Byte] = evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ) 

5 val s3 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicProfile.scala"),1024) 

6 // s3 : fs2.Stream[fs2.Task,Byte] = evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 )

fs2.io.file.readAll函数的款式如下:

def readAll[F[_]](path: Path, chunkSize: Int)(implicit F: Effect[F]): Stream[F, Byte] ={...}

readAll分批(by chunks)从文件中读取Byte类型数据(当返回数据量小于chunkSize代表完成读取),返回结果类型是Stream[F,Byte]。我们需要进行Byte String转换及分行等处理。fs2在text对象里提供了相关函数:

object text { 

 private val utf8Charset = Charset.forName("UTF-8") 

 /** Converts UTF-8 encoded byte stream to a stream of `String`. */ 

 def utf8Decode[F[_]]: Pipe[F, Byte, String] = 

 _.chunks.through(utf8DecodeC) 

 /** Converts UTF-8 encoded `Chunk[Byte]` inputs to `String`. */ 

 def utf8DecodeC[F[_]]: Pipe[F, Chunk[Byte], String] = { 

 /** 

 * Returns the number of continuation bytes if `b` is an ASCII byte or a 

 * leading byte of a multi-byte sequence, and -1 otherwise. 

 def continuationBytes(b: Byte): Int = { 

 if ((b 0x80) == 0x00) 0 // ASCII byte 

 else if ((b 0xE0) == 0xC0) 1 // leading byte of a 2 byte seq 

 else if ((b 0xF0) == 0xE0) 2 // leading byte of a 3 byte seq 

 else if ((b 0xF8) == 0xF0) 3 // leading byte of a 4 byte seq 

 else -1 // continuation byte or garbage 

/** Encodes a stream of `String` in to a stream of bytes using the UTF-8 charset. */ 

 def utf8Encode[F[_]]: Pipe[F, String, Byte] = 

 _.flatMap(s = Stream.chunk(Chunk.bytes(s.getBytes(utf8Charset)))) 

 /** Encodes a stream of `String` in to a stream of `Chunk[Byte]` using the UTF-8 charset. */ 

 def utf8EncodeC[F[_]]: Pipe[F, String, Chunk[Byte]] = 

 _.map(s = Chunk.bytes(s.getBytes(utf8Charset))) 

 /** Transforms a stream of `String` such that each emitted `String` is a line from the input. */ 

 def lines[F[_]]: Pipe[F, String, String] = { 

...

utf8Encode,utf8Decode,lines这几个函数正是我们需要的,它们都是Pipe类型。我们可以把这几个Pipe直接用through接到Stream上:

 1 val startTime = System.currentTimeMillis // startTime : Long = 1472444756321 

 2 val s1lines = s1.through(text.utf8Decode).through(text.lines) 

 3 .through(randomDelay(10 millis)).runFold(0)((b,_) = b + 1).unsafeRun 

 4 // s1lines : Int = 479 

 5 println(s"reading s1 $s1lines lines in ${System.currentTimeMillis - startTime}ms") 

 6 // reading s1 479 lines in 5370ms 

 8 val startTime2 = System.currentTimeMillis // startTime2 : Long = 1472444761691 

 9 val s2lines = s2.through(text.utf8Decode).through(text.lines) 

10 .through(randomDelay(10 millis)).runFold(0)((b,_) = b + 1).unsafeRun 

11 // s2lines : Int = 174 

12 println(s"reading s2 $s2lines lines in ${System.currentTimeMillis - startTime2}ms") 

13 // reading s2 174 lines in 1923ms 

14 val startTime3 = System.currentTimeMillis // startTime3 : Long = 1472444763614 

15 val s3lines = s3.through(text.utf8Decode).through(text.lines) 

16 .through(randomDelay(10 millis)).runFold(0)((b,_) = b + 1).unsafeRun 

17 // s3lines : Int = 174 

18 println(s"reading s3 $s3lines lines in ${System.currentTimeMillis - startTime3}ms") 

19 // reading s3 174 lines in 1928ms 

20 println(s"reading all three files ${s1lines+s2lines+s3lines} total lines in ${System.currentTimeMillis - startTime}ms") 

21 // reading all three files 827 total lines in 9221ms

在以上的例子里我们用runFold函数统计文件的文字行数并在读取过程中用randomDelay来制造了随意长度的拖延。上面3个文件的字串读取和转换处理一共877行、9221ms。

我们知道fs2的并行运算函数concurrent.join函数类型款式是这样的:

def join[F[_],O](maxOpen: Int)(outer: Stream[F,Stream[F,O]])(implicit F: Async[F]): Stream[F,O] = {...}

join运算的对象outer是个两层Stream(Streams of Stream):Stream[F,Stream[F,P]],我们需要先进行类型款式调整:

1 val lines1 = s1.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis)) 

2 // lines1 : fs2.Stream[fs2.Task,String] = evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ).flatMap( function1 ) 

3 val lines2 = s2.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis)) 

4 // lines2 : fs2.Stream[fs2.Task,String] = evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ).flatMap( function1 ) 

5 val lines3 = s3.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis)) 

6 // lines3 : fs2.Stream[fs2.Task,String] = evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ).flatMap( function1 ) 

7 val ss: Stream[Task,Stream[Task,String]] = Stream(lines1,lines2,lines3) 

8 // ss : fs2.Stream[fs2.Task,fs2.Stream[fs2.Task,String]] = Segment(Emit(Chunk(evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ).flatMap( function1 ), evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ).flatMap( function1 ), evalScope(Scope(Bind(Eval(Snapshot), function1 ))).flatMap( function1 ).flatMap( function1 ))))

现在这个ss的类型复合我们的要求。我们可以测试一下并行运算的效率:

1 val ss_start = System.currentTimeMillis // ss_start : Long = 1472449962698 

2 val ss_lines = fs2.concurrent.join(3)(ss).runFold(0)((b,_) = b + 1).unsafeRun 

3 // ss_lines : Int = 827 

4 println(s"parallel reading all files ${ss_lines} total lines in ${System.currentTimeMillis - ss_start}ms") 

5 // parallel reading all files 827 total lines in 5173ms

读取同等行数但只用了5173ms,与之前的9221ms相比,大约有成倍的提速。

join(3)(ss)返回了一个合并的Stream,类型是Stream[Task,String]。我们可以运算这个Stream里母音出现的频率。我们先设计这个统计函数:

1 //c 是个vowl 

2 def vowls(c: Char): Boolean = List(A,E,I,O,U).contains(c) 

3 // vowls: (c: Char)Boolean 

4 //直接用scala标准库实现 

5 def pipeVowlsCount: Pipe[Task,String,Map[Char,Int]] = 

6 _.evalMap (text = Task.delay{ 

7 text.toUpperCase.toList.filter(vowls).groupBy(s = s).mapValues(_.size) 

8 }.schedule((text.length / 10).millis)) // pipeVowlsCount: = fs2.Pipe[fs2.Task,String,Map[Char,Int]]

注意我们使用了text = Task.delay{ }.schedule(d),实际上我们完全可以用 text = Thread.sleep(d),但是这样会造成了不纯代码,所以我们用evalMap来实现纯代码运算。试试统计全部字串内母音出现的总数:

 1 import scalaz.{Monoid} 

 2 //为runFold提供一个Map[Char,Int]Monoid实例 

 3 implicit object mapMonoid extends Monoid[Map[Char,Int]] { 

 4 def zero: Map[Char,Int] = Map() 

 5 def append(m1: Map[Char,Int], m2: = Map[Char,Int]): Map[Char,Int] = { 

 6 (m1.keySet ++ m2.keySet).map { k = 

 7 (k, m1.getOrElse(k,0) + m2.getOrElse(k,0)) 

 8 }.toMap 

 9 } 

10 } 

11 val vc_start = System.currentTimeMillis // vc_start : Long = 1472464772465 

12 val vowlsLine = fs2.concurrent.join(3)(ss).through(pipeVowlsCount) 

13 .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun 

14 // vowlsLine : scala.collection.immutable.Map[Char,Int] = Map(E - 3381, U - 838, A - 2361, I - 2031, O - 1824) 

15 println(s"parallel reading all files and counted vowls sequencially in ${System.currentTimeMillis - vc_start}ms") 

16 // parallel reading all files and counted vowls sequencially in 10466ms

我们必须为runFold提供一个Monoid[Map[Char,Int]]实例mapMonoid。

那我们又如何实现统计功能的并行运算呢? fs2.concurrent.join(maxOpen)( )函数能把一个Stream截成maxOpen数的子Stream,然后对这些子Stream进行并行运算。那么我们又如何转换Stream[F,Stream[F,O]]类型呢?我们必须把Stream[F,O]的O升格成Stream[F,O]。我们先用一个函数来把O转换成Map[Char,Int],然后把这个函数升格成Stream[Task,Map[Char,Int],这个可以用Stream.eval实现:

1 def fVowlsCount(text: String): Map[Char,Int] = 

2 text.toUpperCase.toList.filter(vowls).groupBy(s = s).mapValues(_.size) 

3 // fVowlsCount: (text: String)Map[Char,Int] 

4 val parVowlsLine: Stream[Task,Stream[Task,Map[Char,Int]]] = fs2.concurrent.join(3)(ss) 

5 .map {text = Stream.eval(Task {fVowlsCount(text)}.schedule((text.length / 10).millis))} 

6 // parVowlsLine : fs2.Stream[fs2.Task,fs2.Stream[fs2.Task,Map[Char,Int]]] = attemptEval(Task).flatMap( function1 ).flatMap( function1 ).mapChunks( function1 )

我们来检查一下运行效率:

1 val parvc_start = System.currentTimeMillis // parvc_start : Long = 1472465844694 

2 fs2.concurrent.join(8)(parVowlsLine) 

3 .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun 

4 // res0: scala.collection.immutable.Map[Char,Int] = Map(E - 3381, U - 838, A- 2361, I - 2031, O - 1824) 

5 println(s"parallel reading all files and counted vowls in ${System.currentTimeMillis - parvc_start}ms") 

6 // parallel reading all files and counted vowls in 4984ms

并行运算只需要4985ms,而流程运算需要10466+(9221-5173)=14xxx,这里有3,4倍的速度提升。

下面是这次讨论的示范源代码:

 1 import fs2._ 

 2 import scala.language.{higherKinds,implicitConversions,postfixOps} 

 3 import scala.concurrent.duration._ 

 4 object fs2Merge { 

 5 implicit val strategy = Strategy.fromFixedDaemonPool(4) 

 6 implicit val scheduler = Scheduler.fromFixedDaemonPool(2) 

 7 def log[A](prompt: String): Pipe[Task,A,A] = _.evalMap { a = Task.delay{ println(s"$prompt "); a }} 

 8 def randomDelay[A](max: FiniteDuration): Pipe[Task,A,A] = _.evalMap { a = 

 9 val delay: Task[Int] = Task.delay { scala.util.Random.nextInt(max.toMillis.toInt) } 

10 delay.flatMap {d = Task.now(a).schedule(d.millis) } 

11 } 

13 val s1 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicBackend.scala"),1024) 

14 val s2 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/DatabaseConfig.scala"),1024) 

15 val s3 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicProfile.scala"),1024) 

18 val startTime = System.currentTimeMillis 

19 val s1lines = s1.through(text.utf8Decode).through(text.lines) 

20 .through(randomDelay(10 millis)).runFold(0)((b,_) = b + 1).unsafeRun 

21 println(s"reading s1 $s1lines lines in ${System.currentTimeMillis - startTime}ms") 

23 val startTime2 = System.currentTimeMillis 

24 val s2lines = s2.through(text.utf8Decode).through(text.lines) 

25 .through(randomDelay(10 millis)).runFold(0)((b,_) = b + 1).unsafeRun 

26 println(s"reading s2 $s2lines lines in ${System.currentTimeMillis - startTime2}ms") 

27 val startTime3 = System.currentTimeMillis 

28 val s3lines = s3.through(text.utf8Decode).through(text.lines) 

29 .through(randomDelay(10 millis)).runFold(0)((b,_) = b + 1).unsafeRun 

30 println(s"reading s3 $s3lines lines in ${System.currentTimeMillis - startTime3}ms") 

31 println(s"reading all three files ${s1lines+s2lines+s3lines} total lines in ${System.currentTimeMillis - startTime}ms") 

32 val lines1 = s1.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis)) 

33 val lines2 = s2.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis)) 

34 val lines3 = s3.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis)) 

35 val ss: Stream[Task,Stream[Task,String]] = Stream(lines1,lines2,lines3) 

36 val ss_start = System.currentTimeMillis 

37 val ss_lines = fs2.concurrent.join(3)(ss).runFold(0)((b,_) = b + 1).unsafeRun 

38 println(s"parallel reading all files ${ss_lines} total lines in ${System.currentTimeMillis - ss_start}ms") 

40 //c 是个vowl 

41 def vowls(c: Char): Boolean = List(A,E,I,O,U).contains(c) 

42 //直接用scala标准库实现 

43 def pipeVowlsCount: Pipe[Task,String,Map[Char,Int]] = 

44 _.evalMap (text = Task.delay{ 

45 text.toUpperCase.toList.filter(vowls).groupBy(s = s).mapValues(_.size) 

46 }.schedule((text.length / 10).millis)) 

48 import scalaz.{Monoid} 

49 //为runFold提供一个Map[Char,Int]Monoid实例 

50 implicit object mapMonoid extends Monoid[Map[Char,Int]] { 

51 def zero: Map[Char,Int] = Map() 

52 def append(m1: Map[Char,Int], m2: = Map[Char,Int]): Map[Char,Int] = { 

53 (m1.keySet ++ m2.keySet).map { k = 

54 (k, m1.getOrElse(k,0) + m2.getOrElse(k,0)) 

55 }.toMap 

56 } 

57 } 

58 val vc_start = System.currentTimeMillis 

59 val vowlsLine = fs2.concurrent.join(3)(ss).through(pipeVowlsCount) 

60 .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun 

61 println(s"parallel reading all files and counted vowls sequencially in ${System.currentTimeMillis - vc_start}ms") 

62 def fVowlsCount(text: String): Map[Char,Int] = 

63 text.toUpperCase.toList.filter(vowls).groupBy(s = s).mapValues(_.size) 

64 val parVowlsLine: Stream[Task,Stream[Task,Map[Char,Int]]] = fs2.concurrent.join(3)(ss) 

65 .map {text = Stream.eval(Task {fVowlsCount(text)}.schedule((text.length / 10).millis))} 

66 val parvc_start = System.currentTimeMillis 

67 fs2.concurrent.join(8)(parVowlsLine) 

68 .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun 

69 println(s"parallel reading all files and counted vowls in ${System.currentTimeMillis - parvc_start}ms") 

70 }

 

 

 

 

 

 

 

 

 

 

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/12892.html

cjavamac