zl程序教程

您现在的位置是:首页 >  其它

当前栏目

用遗传算法寻找迷宫出路

寻找 出路 迷宫 遗传算法
2023-06-13 09:18:42 时间
来源:Deephub Imba本文约4800字,建议阅读10分钟本文中我们将使用遗传算法在迷宫中找到最短路径。

遗传算法是一种基于达尔文进化论的搜索启发式算法。该算法模拟了基于种群中最适合个体的自然选择。

遗传算法需要两个参数,即种群和适应度函数。根据适应度值在群体中选择最适合的个体。最健康的个体通过交叉和突变技术产生后代,创造一个新的、更好的种群。这个过程重复几代,直到得到最好的解决方案。

要解决的问题

本文中我们将使用遗传算法在迷宫中找到最短路径。

本文的的路径规划基于论文Autonomous Robot Navigation Using Genetic Algorithm with an Efficient Genotype Structure。

本文的代码基于两个假设:

1、代理不能对角线移动,也就是说只能左右,上下移动,不能走斜线。

2、迷宫的地图是已知的,但是代理不知道。

基因型

在由 N 列建模的导航环境中,路径可以由具有 N 个基因的基因型表示。 每个基因都是一个代表检查点坐标的元组。

所以我们的基因型如下,列式结构:

在列式结构中,我们假设每个基因都只放在一列中,例如,取一条大小为 8 的染色体,[(1,1), (4,2), (4,3), (6,4), (2,5), (3,6), (7,7), (8,8)]。 它会像这样放置:

这里假设起始坐标是(1,1),目标坐标是(8,8)

有两种方法可以从一个检查点移动到另一个检查点:

先排成一行移动 或  先排成一列移动

行移动:先在一行中移动,然后在列中移动。 如果我们从前面的例子中获取染色体,我们得到的路径是:

列移动:类似的,先在一列中移动,然后在一行中移动。 我们得到的路径是:

虽然这种基因型结构很好,但它不能为某些迷宫产生路径。 所以这种结构假定每个路径段都以连续的列结束。

实现遗传算法

本文使用python语言来实现遗传算法,并在最后有完整代码链接。

1、导入模块

这里的一个没见过的模块是pyamaze,它主要是python中生成迷宫。

 from random import randint, random, choice from pyamaze import maze, agent from copy import deepcopy, copy import csv

2、定义常量和一些初始化

设置程序的不同参数并创建一个迷宫。

 #initialize constants POPULATIONSIZE = 120 ROWS, COLS = 16,8
 #Set the mutation rate  MUTATION_RATE = 100
 # start and end points of the maze START, END = 1, COLS
 #weights of path length, infeasible steps and number of turns wl, ws, wt = 2, 3, 2
 #file name for storing fitness parameters file_name = 'data.csv'
 #initilize a maze object and create a maze  m = maze(ROWS, COLS) m.CreateMaze(loopPercent=100) maps = m.maze_map

3、种群的创建

此函数创建种群并为每个个体随机生成方向属性。

 def popFiller(pop, direction):     """    Takes in population and direction lists and fills them with random values within the range.    """     for i in range(POPULATIONSIZE):         # Generate a random path and add it to the population list         pop.append([(randint(1, ROWS), j) for j in range(1, COLS + 1)])         # Set the start and end points of the path         pop[i][0] = (START, START)         pop[i][-1] = (ROWS, END)         # Generate a random direction and add it to the direction list         direction.append(choice(["r", "c"]))     return pop, direction

4、路径计算

这一步使用了两个函数:inter_steps函数以两个坐标作为元组,例如(x, y)和方向信息来生成这些点之间的中间步数。path函数使用inter_steps函数通过循环每个个体的基因来生成它的路径。

 def inter_steps(point1, point2, direction):     """    Takes in two points and the direction of the path between them and returns the intermediate steps between them.    """     steps = []     if direction == "c": # column first         if point1[0] < point2[0]:               steps.extend([(i, point1[1]) for i in range(point1[0] + 1, point2[0] + 1)])         elif point1[0] > point2[0]:             steps.extend([(i, point1[1]) for i in range(point1[0] - 1, point2[0] - 1, -1)])         steps.append(point2)     elif direction == "r": # row first         if point1[0] < point2[0]:               steps.extend([(i, point1[1] + 1) for i in range(point1[0], point2[0] + 1)])         elif point1[0] > point2[0]:             steps.extend([(i, point1[1] + 1) for i in range(point1[0], point2[0] - 1, -1)])         else:             steps.append(point2)     return steps
 def path(individual, direction):     """    Takes in the population list and the direction list and returns the complete path using the inter_steps function.    """     complete_path = [individual[0]]     for i in range(len(individual) - 1):         # Get the intermediate steps between the current and the next point in the population         complete_path.extend(inter_steps(individual[i], individual[i + 1], direction))     return complete_path

5、适应度评估

这个步骤使用两个函数来计算个体的适应度:pathParameters函数计算个体转弯次数和不可行步数,fitCal函数利用这些信息计算每个个体的适应度。 适应度计算的公式如下:

这些公式分别归一化了转身、不可行步长和路径长度的适应度。整体适应度计算公式如下所示:

wf, wl, wt是定义参数权重的常数,分别是不可行的步数,路径长度和转弯次数。这些常量之前已经初始化。

fitCal函数有一个额外的关键字参数,即createCSV,它用于将不同的参数写入CSV文件。

 def pathParameters(individual, complete_path, map_data):     """    Takes in an individual, it's complete path and the map data    and returns the number of turns and the number of infeasible steps.    """     # Count the number of turns in the individual's path     turns = sum(         1         for i in range(len(individual) - 1)         if individual[i][0] != individual[i + 1][0]    )     # Count the number of Infeasible steps in the individual's path     infeas = sum(         any(            (                 map_data[complete_path[i]]["E"] == 0 and complete_path[i][1] == complete_path[i+ 1][1] - 1,                 map_data[complete_path[i]]["W"] == 0 and complete_path[i][1] == complete_path[i+ 1][1] + 1,                 map_data[complete_path[i]]["S"] == 0 and complete_path[i][0] == complete_path[i+ 1][0] - 1,                 map_data[complete_path[i]]["N"] == 0 and complete_path[i][0] == complete_path[i+ 1][0] + 1,            )        )         for i in range(len(complete_path) - 1)    )     return turns, infeas

 def fitCal(population, direction, solutions,createCSV = True):     """    Takes in the population list and the direction list and    returns the fitness list of the population and the solution found(infeasible steps equal to zero).    Args:    - population (list): a list of individuals in the population    - direction (list): a list of the direction for each individual    - solutions (list): a list of the solutions found so far    - createCSV (bool): a flag indicating whether to create a CSV file or not (default: True)    """     # Initialize empty lists for turns, infeasible steps, and path length     turns = []     infeas_steps = []     length = []
     # A function for calculating the normalized fitness value     def calc(curr, maxi, mini):         if maxi == mini:             return 0         else:             return 1 - ((curr - mini) / (maxi - mini))
     # Iterate over each individual in the population     for i, individual in enumerate(population):         # Generate the complete path of individual          p = path(individual, direction[i])          # Calculate the number of turns and infeasible steps in the individual's path         t, s = pathParameters(individual, p, maps)         # If the individual has zero infeasible steps, add it to the solutions list         if s == 0:             solutions.append([deepcopy(individual), copy(direction[i])])         # Add the individual's number of turns, infeasible steps, and path length to their respective lists         turns.append(t)         infeas_steps.append(s)         length.append(len(p))
     # Calculate the maximum and minimum values for turns, infeasible steps, and path length     max_t, min_t = max(turns), min(turns)     max_s, min_s = max(infeas_steps), min(infeas_steps)     max_l, min_l = max(length), min(length)
     # Calculate the normalized fitness values for turns, infeasible steps, and path length     fs = [calc(infeas_steps[i], max_s, min_s) for i in range(len(population))]     fl = [calc(length[i],max_l, min_l) for i in range(len(population))]     ft = [calc(turns[i],  max_t, min_t) for i in range(len(population))]
     # Calculate the fitness scores for each individual in the population     fitness = [        (100 * ws * fs[i]) * ((wl * fl[i] + wt * ft[i]) / (wl + wt))         for i in range(POPULATIONSIZE)    ]
     # If createCSV flag is True, write the parameters of fitness to a CSV file     if createCSV:         with open(file_name, 'a+', newline='') as f:             writer = csv.DictWriter(f, fieldnames=['Path Length', 'Turns', 'Infeasible Steps','Fitness'])             writer.writerow({'Path Length': min_l, 'Turns': min_t, 'Infeasible Steps': min_s, 'Fitness':max(fitness)})
     return fitness, solutions

6、选择

这个函数根据适应度值对总体进行排序。

 def rankSel(population, fitness, direction):     """    Takes in the population, fitness and direction lists and returns the population and direction lists after rank selection.    """     # Pair each fitness value with its corresponding individual and direction     pairs = zip(fitness, population, direction)     # Sort pairs in descending order based on fitness value     sorted_pair = sorted(pairs, key=lambda x: x[0], reverse=True)     # Unzip the sorted pairs into separate lists     _, population, direction = zip(*sorted_pair)
     return list(population), list(direction)

7、交叉

这个函数实现了单点交叉。它随机选择一个交叉点,并使用种群人口的前一半(父母)来创建后一半,具体方法如下图所示:

 def crossover(population, direction):     """     Takes in the population and direction lists and returns the population and direction lists after single point crossover.    """     # Choose a random crossover point between the second and second-to-last gene     crossover_point = randint(2, len(population[0]) - 2)     # Calculate the number of parents to mate (half the population size)     no_of_parents = POPULATIONSIZE // 2     for i in range(no_of_parents - 1):         # Create offspring by combining the genes of two parents up to the crossover point         population[i + no_of_parents] = (             population[i][:crossover_point] + population[i + 1][crossover_point:]        )         # Choose a random direction for the offspring         direction[i + no_of_parents] = choice(["r", "c"])     return population, direction

8、变异

通过将基因(即tuple (x, y))的x值更改为范围内的任意数字来实现插入突变。元组的y值保持不变,因为我们假设迷宫中的每一列都应该只有一个检查点。

有几个参数可以调整,mutation_rate和no_of_genes_to_mutate。

 def mutation(population, mutation_rate, direction, no_of_genes_to_mutate=1):     """    Takes in the population, mutation rate, direction and number of genes to mutate    and returns the population and direction lists after mutation.    """     # Validate the number of genes to mutate     if no_of_genes_to_mutate <= 0:         raise ValueError("Number of genes to mutate must be greater than 0")     if no_of_genes_to_mutate > COLS:         raise ValueError(             "Number of genes to mutate must not be greater than number of columns"        )
     for i in range(POPULATIONSIZE):         # Check if the individual will be mutated based on the mutation rate         if random() < mutation_rate:             for _ in range(no_of_genes_to_mutate):                 # Choose a random gene to mutate and replace it with a new random gene                 index = randint(1, COLS - 2)                 population[i][index] = (randint(1, ROWS), population[i][index][1])             # Choose a random direction for the mutated individual             direction[i] = choice(["r", "c"])     return population, direction

9、最佳解

该函数根据解的路径长度返回最佳解。

 def best_solution(solutions):     """Takes a list of solutions and returns the best individual(list) and direction"""     # Initialize the best individual and direction as the first solution in the list     best_individual, best_direction = solutions[0]     # Calculate the length of the path for the best solution     min_length = len(path(best_individual, best_direction))
     for individual, direction in solutions[1:]:         # Calculate the length of the path for the best solution         current_length = len(path(individual, direction))         # If the current solution is better than the best solution, update the best solution         if current_length < min_length:             min_length = current_length             best_individual = individual             best_direction = direction     return best_individual, best_direction

10、整合

整个算法的工作流程就像我们开头显示的流程图一样,下面是代码:

 def main():
     # Initialize population, direction, and solution lists     pop, direc, sol = [], [], []     # Set the generation count and the maximum number of generations     gen, maxGen = 0, 2000     # Set the number of solutions to be found     sol_count = 1     # Set the number of solutions to be found     pop, direc = popFiller(pop, direc)
     # Create a new CSV file and write header     with open(file_name, 'w', newline='') as f:         writer = csv.DictWriter(f, fieldnames=['Path Length', 'Turns', 'Infeasible Steps', 'Fitness'])         writer.writeheader()
     # Start the loop for the genetic algorithm     print('Running...')     while True:         gen += 1         # Calculate the fitness values for the population and identify any solutions         fitness, sol = fitCal(pop, direc, sol, createCSV=True)         # Select the parents for the next generation using rank selection         pop, direc = rankSel(pop, fitness, direc)          # Create the offspring for the next generation using crossover         pop, direc = crossover(pop, direc)         # mutate the offsprings using mutation function         pop, direc = mutation(pop, MUTATION_RATE, direc, no_of_genes_to_mutate=1)         # Check if the required number of solutions have been found         if len(sol) == sol_count:             print("Solution found!")             break
         # Check if the maximum number of generations have been reached         if gen >= maxGen:             print("Solution not found!")             flag = input("Do you want to create another population(y/n): ")             # if flag is 'y', clear the population and direction lists and refill them             if flag == 'y':                 pop, direc = [], []                 pop, direc = popFiller(pop, direc)                 gen = 0                 continue              # If flag is 'n' exit the program             else:                 print("Good Bye")                 return None 
      # Find the best solution and its direction     solIndiv, solDir = best_solution(sol)     # Generate the final solution path and reverse it     solPath = path(solIndiv, solDir)     solPath.reverse()
      # Create an agent, set its properties, and trace its path through the maze     a = agent(m, shape="square", filled=False, footprints=True)     m.tracePath({a: solPath}, delay=100)
     m.run()
 if __name__ == "__main__":     # Call the main function     main()

可视化和结果展示

最后为了能看到算法的过程,可以可视化不同参数随代数的变化趋势,使用matplotlib和pandas绘制曲线。

下面是一个使用“loopPercent = 100”的15 * 15迷宫的结果:

我们可以对他进行一些简单的分析:下图是我结果中得到的趋势线。“不可行的步数”显著减少,“路径长度”和“转弯数”也显著减少。经过几代之后,路径长度和转弯数变得稳定,表明算法已经收敛到一个解决方案。

适应度曲线不一致的可能原因:

当一个个体在种群中的适应度最大时,不意味着它就是解决方案。但它继续产生越来越多的可能解,如果一个群体包含相似的个体,整体的适合度会降低。

下面一个是是使用“loopPercent = 100”的10 * 20迷宫的结果:

趋势线与之前的迷宫相似:

使用“loopPercent = 100”的12 × 12迷宫的结果:

程序运行后找到的三个解决方案,并从中选择最佳解决方案。红色的是最佳方案。最佳解决方案是根据路径长度等标准选择的。与其他解决方案相比,红色代理能够找到通过迷宫的有效路径。这些结果证明了该方案的有效性。

一些数据指标的对比

计算了10个不同大小的迷宫的解决方案所需时间的数据。

随着迷宫规模的增加,时间几乎呈指数增长。这意味着用这种算法解决更大的迷宫是很有挑战性的。

这是肯定的:

因为遗传算法是模拟的自然选择,有一定的随机性,所以计算量很大,特别是对于大而复杂的问题。我们选择的实现方法也适合于小型和简单的迷宫,基因型结构不适合大型和复杂的迷宫。迷宫的结果也取决于初始总体,如果初始总体是好的,它会更快地收敛到解决方案,否则就有可能陷入局部最优。遗传算法也不能找到最优解。

总结

本文我们成功地构建并测试了一个解决迷宫的遗传算法实现。对结果的分析表明,该算法能够在合理的时间内找到最优解,但随着迷宫大小的增加或loopPercent的减少,这种实现就会变得困难。参数POPULATION_SIZE和mutation_rate,对算法的性能有重大影响。本文只是对遗传算法原理的一个讲解,可以帮助你了解遗传算法的原理,对于小型数据可以实验,但是在大型数据的生产环境,请先进行优化。

论文地址:

https://www.researchgate.net/publication/245577486_AUTONOMOUS_ROBOT_NAVIGATION_USING_A_GENETIC_ALGORITHM_WITH_AN_EFFICIENT_GENOTYPE_STRUCTURE

本文代码:

https://github.com/DayanHafeez/MazeSolvingUsingGeneticAlgorithm-(注意,后面有个 -)

编辑:王菁

校对:杨学俊