zl程序教程

您现在的位置是:首页 >  其它

当前栏目

使用mlr3搞定二分类资料的多个模型评价和比较

使用 模型 比较 多个 搞定 分类 资料 评价
2023-06-13 09:15:10 时间

前面介绍了使用tidymodels进行二分类资料的模型评价和比较,不知道大家学会了没?

我之前详细介绍过mlr3这个包,也是目前R语言机器学习领域比较火的R包了,今天说下这么用mlr3进行二分类资料的模型评价和比较。

本期目录:

  • 加载R包
  • 建立任务
  • 数据预处理
  • 选择多个模型
  • 建立benchmark_grid
  • 开始计算
  • 查看模型表现
  • 结果可视化
  • 选择最好的模型

加载R包

首先还是加载数据和R包,和之前的数据一样的。

library(mlr3verse)
## Loading required package: mlr3
library(mlr3pipelines)
library(mlr3filters)

建立任务

然后是对数据进行划分训练集和测试集,对数据进行预处理,为了和之前的tidymodels进行比较,这里使用的数据和预处理步骤都是和之前一样的。

# 读取数据
all_plays <- readRDS("../000files/all_plays.rds")

# 建立任务
pbp_task <- as_task_classif(all_plays, target="play_type")

# 数据划分
split_task <- partition(pbp_task, ratio=0.75)

task_train <- pbp_task$clone()$filter(split_task$train)
task_test <- pbp_task$clone()$filter(split_task$test)

数据预处理

建立任务后就是建立数据预处理步骤,这里采用和上篇推文tidymodels中一样的预处理步骤:

# 数据预处理
pbp_prep <- po("select", # 去掉3列
               selector = selector_invert(
                 selector_name(c("half_seconds_remaining","yards_gained","game_id")))
               ) %>>%
  po("colapply", # 把这两列变成因子类型
     affect_columns = selector_name(c("posteam","defteam")),
     applicator = as.factor) %>>% 
  po("filter", # 去除高度相关的列
     filter = mlr3filters::flt("find_correlation"), filter.cutoff=0.3) %>>%
  po("scale", scale = F) %>>% # 中心化
  po("removeconstants") # 去掉零方差变量

可以看到mlr3的数据预处理与tidymodels相比,在语法上确实是有些复杂了,而且由于使用的R6,很多语法看起来很别扭,文档也说的不清楚,对于新手来说还是tidymodels更好些。目前来说最大的优势可能就是速度了吧。。。

如果你想把预处理步骤应用于数据,得到预处理之后的数据,可以用以下代码:

task_prep <- pbp_prep$clone()$train(pbp_task)[[1]]
dim(task_train$data())
##  68982    26

task_prep$feature_types
##                             id    type
##  1:                    defteam  factor
##  2:              defteam_score numeric
##  3: defteam_timeouts_remaining  factor
##  4:                       down ordered
##  5:                 goal_to_go  factor
##  6:                in_fg_range  factor
##  7:                in_red_zone  factor
##  8:                  no_huddle  factor
##  9:                    posteam  factor
## 10:              posteam_score numeric
## 11: posteam_timeouts_remaining  factor
## 12:              previous_play  factor
## 13:                        qtr ordered
## 14:         score_differential numeric
## 15:                    shotgun  factor
## 16:                 total_pass numeric
## 17:              two_min_drill  factor
## 18:               yardline_100 numeric
## 19:                    ydstogo numeric

这样就得到了处理好的数据,但是对于mlr3pipelines来说,这一步做不做都可以。

选择多个模型

还是选择和之前一样的4个模型:逻辑回归、随机森林、决策树、k最近邻:

# 随机森林
rf_glr <- as_learner(pbp_prep %>>% lrn("classif.ranger", predict_type="prob")) 
rf_glr$id <- "randomForest"

# 逻辑回归
log_glr <-as_learner(pbp_prep %>>% lrn("classif.log_reg", predict_type="prob")) 
log_glr$id <- "logistic"

# 决策树
tree_glr <- as_learner(pbp_prep %>>% lrn("classif.rpart", predict_type="prob")) 
tree_glr$id <- "decisionTree"

# k近邻
kknn_glr <- as_learner(pbp_prep %>>% lrn("classif.kknn", predict_type="prob")) 
kknn_glr$id <- "kknn"

建立benchmark_grid

类似于tidymodels中的workflow_set

接下来就是选择10折交叉验证,建立多个模型,语法也是很简单了。

set.seed(0520)

# 10折交叉验证
cv <- rsmp("cv",folds=10)

set.seed(0520)

# 建立多个模型
design <- benchmark_grid(
  tasks = task_train,
  learners = list(rf_glr,log_glr,tree_glr,kknn_glr),
  resampling = cv
)

在训练集中,使用10折交叉验证,运行4个模型,看这语法是不是也很简单清晰?

开始计算

下面就是开始计算,和tidymodels相比,这一块语法更加简单一点,就是建立benchmark_grid,然后使用benchmark()函数即可。

# 加速
library(future)
plan("multisession",workers=12)

# 减少屏幕输出
lgr::get_logger("mlr3")$set_threshold("warn")
lgr::get_logger("bbotk")$set_threshold("warn")

# 开始运行
bmr <- benchmark(design,store_models = T)

Growing trees.. Progress: 29%. Estimated remaining time: 1 minute, 14 seconds.
Growing trees.. Progress: 61%. Estimated remaining time: 39 seconds.
Growing trees.. Progress: 92%. Estimated remaining time: 8 seconds.
Growing trees.. Progress: 29%. Estimated remaining time: 1 minute, 16 seconds.
Growing trees.. Progress: 60%. Estimated remaining time: 40 seconds.
Growing trees.. Progress: 91%. Estimated remaining time: 8 seconds.
Growing trees.. Progress: 43%. Estimated remaining time: 40 seconds.
Growing trees.. Progress: 83%. Estimated remaining time: 12 seconds.
Growing trees.. Progress: 42%. Estimated remaining time: 42 seconds.
Growing trees.. Progress: 90%. Estimated remaining time: 7 seconds.
Growing trees.. Progress: 30%. Estimated remaining time: 1 minute, 10 seconds.
Growing trees.. Progress: 62%. Estimated remaining time: 38 seconds.
Growing trees.. Progress: 93%. Estimated remaining time: 7 seconds.
Growing trees.. Progress: 30%. Estimated remaining time: 1 minute, 10 seconds.
Growing trees.. Progress: 61%. Estimated remaining time: 38 seconds.
Growing trees.. Progress: 92%. Estimated remaining time: 7 seconds.
Growing trees.. Progress: 29%. Estimated remaining time: 1 minute, 15 seconds.
Growing trees.. Progress: 60%. Estimated remaining time: 41 seconds.
Growing trees.. Progress: 91%. Estimated remaining time: 9 seconds.
Growing trees.. Progress: 32%. Estimated remaining time: 1 minute, 7 seconds.
Growing trees.. Progress: 73%. Estimated remaining time: 22 seconds.
Growing trees.. Progress: 42%. Estimated remaining time: 42 seconds.
Growing trees.. Progress: 84%. Estimated remaining time: 11 seconds.
Growing trees.. Progress: 32%. Estimated remaining time: 1 minute, 7 seconds.
Growing trees.. Progress: 63%. Estimated remaining time: 36 seconds.
Growing trees.. Progress: 94%. Estimated remaining time: 6 seconds.

# 结果
bmr

<BenchmarkResult> of 40 rows with 4 resampling runs
 nr   task_id   learner_id resampling_id iters warnings errors
  1 all_plays randomForest            cv    10        0      0
  2 all_plays     logistic            cv    10        0      0
  3 all_plays decisionTree            cv    10        0      0
  4 all_plays         kknn            cv    10        0      0

查看模型表现

查看结果:

# 默认结果
bmr$aggregate()

nr      resample_result   task_id   learner_id resampling_id iters classif.ce
1:  1 <ResampleResult[22]> all_plays randomForest            cv    10  0.2695630
2:  2 <ResampleResult[22]> all_plays     logistic            cv    10  0.2770287
3:  3 <ResampleResult[22]> all_plays decisionTree            cv    10  0.2799570
4:  4 <ResampleResult[22]> all_plays         kknn            cv    10  0.3220549

也是支持同时查看多个结果的:

measures <- msrs(c("classif.auc","classif.acc","classif.bbrier"))

bmr_res <- bmr$aggregate(measures)
bmr_res[,c(4,7:9)]

   learner_id classif.auc classif.acc classif.bbrier
1: randomForest   0.7978436   0.7304370      0.1790968
2:     logistic   0.7798504   0.7229713      0.1866577
3: decisionTree   0.7034790   0.7200430      0.2003303
4:         kknn   0.7322762   0.6779451      0.2210171

结果可视化

支持ggplot2语法,使用起来和tidymodels差不多,也是对结果直接autoplot()即可。

library(ggplot2)
autoplot(bmr)+theme(axis.text.x = element_text(angle = 45))

喜闻乐见的ROC曲线:

autoplot(bmr,type = "roc")

选择最好的模型

通过比较结果可以发现还是随机森林效果最好~,下面选择随机森林,在训练集上训练,在测试集上测试结果。

这一步并没有使用10折交叉验证,如果你想用,也是可以的~

# 训练
rf_glr$train(task_train)

训练好之后就是在测试集上测试并查看结果:

# 测试
prediction <- rf_glr$predict(task_test)
head(as.data.table(prediction))

row_ids truth response prob.pass   prob.run
1:       4   run     pass 0.7649998 0.23500021
2:       6   run      run 0.4168520 0.58314804
3:      11  pass     pass 0.7199717 0.28002834
4:      13   run     pass 0.9406333 0.05936668
5:      17   run      run 0.4073665 0.59263354
6:      24  pass     pass 0.6243693 0.37563072

混淆矩阵:

prediction$confusion

        truth
response  pass   run
    pass 10629  3175
    run   2955  6235

可视化混淆矩阵:

autoplot(prediction)

当然也是支持多个指标的:

prediction$score(msrs(c("classif.auc","classif.acc","classif.bbrier")))

classif.auc    classif.acc classif.bbrier 
0.8011720      0.7334087      0.1775684 

喜闻乐见ROC曲线:

autoplot(prediction,type = "roc")

image-20220704162604466

总体来看mlr3tidymodels相比有优势也有劣势,基本步骤大同小异,除了预处理步骤比较复杂外,其他地方都比较简单~

初学者还是推荐使用tidymodels,熟悉了可以试一下mlr3,集成化程度更高,目前也更加稳定,tidymodels目前还处于快速开发中,经常出现各种小问题,但是说明文档比较详细。

mlr3相比之下更稳定一些,速度明显更快!尤其是数据量比较大的时候!但是mlr3的说明文档并不是很详细,只有mlr3 book,而且很多用法并没有介绍!经常得自己琢磨。

mlr3 book中文翻译版 可以翻看我之前的推文!