zl程序教程

您现在的位置是:首页 >  后端

当前栏目

C++标准库 bitset

2023-09-14 08:58:00 时间

有些程序要处理二进制位的有序集,每个位可能包含 0(关)1(开)值。位是用来保存一组项或条件 的 yes/no 信息(有时也称标志)的简洁方法。标准库提供的 bitset 类简化了位集的处理。要使用 bitset 类就必须包含相关的头文件。在本书提供的例子中,假设都使用 std::bitset 的using声明:

#include bitset 

using std::bitset;
bitset 对象的定义和初始化

下表列出了 bitset 的构造函数。类似于 vector,bitset 类是一种类模板;而与 vector 不一样的 是 bitset 类型对象的区别仅在其长度而不在其类型。在定义 bitset 时,要明确 bitset 含有多少位,须在尖括号内给出它的长度值:


给出的长度值必须是常量表达式。正如这里给出的,长度值值必须定义为整型字面值常量或是已 用常量值初始化的整型的 const 对象。这条语句把 bitvec 定义为含有 32 个位的 bitset 对象。和 vector 的元素一样,bitset 中的位是没有命名的,程序员只能按位置来访问。位集合的位置编号从 0 开始,因此,bitvec 的位序是从 0 到 31。 以 0 位开始的位串是低阶位(low-order),以 31 位结束的位串是高阶位( high-order)。

用 unsigned 值初始化 bitset 对象

当用 unsigned long 值作为 bitset 对象的初始值时,该值将转化为二进制的位模式。而 bitset 对象中 的位集作为这种位模式的副本。如果 bitset 类型长度大于 unsigned long 值的二进制位数,则其余的高 阶位将置为 0;如果 bitset 类型长度小于 unsigned long 值的二进制位数,则只使用 unsigned 值中的 低阶位,超过 bistset 类型长度的高阶位将被丢弃。

在 32 位 unsigned long 的机器上,十六进制值 0xffff 表示为二进制位就是十六个 1 和十六个 0(每 个 0xf 可表示为 1111)。可以用 0xffff 初始化 bitset 对象:

// bitvec1 is smaller than the initializer

 bitset 16 bitvec1(0xffff); // bits 0 ... 15 are set to 1

 // bitvec2 same size as initializer

 bitset 32 bitvec2(0xffff); // bits 0 ... 15 are set to 1; 16 ... 31 are 0

 // on a 32-bit machine, bits 0 to 31 initialized from 0xffff

 bitset 128 bitvec3(0xffff); // bits 32 through 127 initialized to zero

上面的三个例子中,0 到 15 位都置为 1。由于 bitvec1 位数少于 unsigned long 的位数,因 此 bitvec1 的初始值的高阶被丢弃。bitvec2 和 unsigned long 长度相同,因此所有位正好放置了初始值。bitvec3 长度大于 32,31 位以上的高阶位就被置为 0。

用 string 对象初始化 bitset 对象
当用 string 对象初始化 bitset 对象时,string 对象直接表示为位模式。从 string 对象读入位集的顺 序是从右向左(from right to left):

string strval("1100");

bitset 32 bitvec4(strval);

bitvec4 的位模式中第 2 和 3 的位置为 1,其余位置都为 0。如果 string 对象的字符个数小 于 bitset 类型的长度,则高阶位置为 0。

string 对象和 bitsets 对象之间是反向转化的:string 对象的最右边字符(即下标最大的那个字符)用来初始化 bitset 对象的低阶位(即下标为 0 的位)。当用string对象初始化 bitset 对象时,记住这一差别很重要。

不一定要把整个 string 对象都作为 bitset 对象的初始值。相反,可以只用某个子串作为初始值:

string str("1111111000000011001101");

bitset 32 bitvec5(str, 5, 4); // 4 bits starting at str[5], 1100

bitset 32 bitvec6(str, str.size() - 4); // use last 4 characters

这里用 str 从 str[5] 开始包含四个字符的子串来初始化 bitvec5。照常,初始化 bitset 对象时总是从子串最右边结尾字符开始的,bitvec5 的从 3 到 0 的二进制位置为 1100 ,其他二进制位都置为 0。如果 省略第三个参数则意味着取从开始位置一直到 string 末尾的所有字符。本例中,取出 str 末尾的四位来 对 bitvec6 的低四位进行初始化。bitvec6 其余的位初始化为 0。这些初始化过程的图示如下:

bitset 对象上的操作

多种 bitset 操作( 表 3.7)用来测试或设置 bitset 对象中的单个或多个二进制位。

测试整个 bitset 对象
如果 bitset 对象中有一个或几个二进制位置为 1,则 any 操作返回 true,也就是说,其返回值等于 1; 相反,如果 bitset 对象中二进制位全为 0,则 none 操作返回 true。

bitset 32 bitvec; // 32 bits, all zero

bool is_set = bitvec.any(); // false, all bits are zero

bool is_not_set = bitvec.none(); // true, all bits are zero

如果需要知道置为 1 的二进制位的个数,可以使用 count 操作,该操作返回置为 1 的二进制位的个数:

size_t bits_set = bitvec.count(); // returns number of bits that are on

count 操作的返回类型是标准库中命名为 size_t 类型。size_t 类型定义在 cstddef 头文件中,该文件 是 C 标准库的头文件 stddef.h 的 C++ 版本。它是一个与机器相关的 unsigned 类型,其大小足以保证存 储内在中对象的大小。
与 vector 和 string 中的 size 操作一样,bitset 的 size 操作返回 bitset 对象中二进制位的个数, 返回值的类型是 size_t:: 

size_t sz = bitvec.size(); // returns 32

访问 bitset 对象中的位
可以用下标操作符来读或写某个索引位置的二进制位,同样地,也可以用下标操作符测试给定二进制位的值 或设置某个二进制们的值:

// assign 1 to even numbered bits

 for (int index = 0; index != 32; index += 2)

 bitvec[index] = 1;

上面的循环把 bitvec 中的偶数下标的位都置为 1。
除了用下标操作符,还可以用 set;、test 和 reset 操作来测试或设置给定二进制位的值:

// equivalent loop using set operation

 for (int index = 0; index != 32; index += 2)

 bitvec.set(index);

为了测试某个二进制位是否为 1,可以用 test 操作或者测试下标操作符的返回值:

if (bitvec.test(i))

 // bitvec[i] is on

 // equivalent test using subscript

 if (bitvec[i])

 // bitvec[i] is on

如果下标操作符测试的二进制位为 1,则返回的测试值的结果为 true,否则返回 false。
对整个 bitset 对象进行设置
set 和 reset 操作分别用来对整个 bitset 对象的所有二进制位全置 1 和全置 0:

bitvec.reset(); // set all the bits to 0.

bitvec.set(); // set all the bits to 1

flip 操作可以对 bitset 对象的所有位或个别位取反

bitvec.flip(0); // reverses value of first bit

bitvec[0].flip(); // also reverses the first bit

bitvec.flip(); // reverses value of all bits

获取 bitset 对象的值
to_ulong 操作返回一个 unsigned long 值,该值与 bitset 对象的位模式存储值相同。仅当 bitset 类型 的长度小于或等于 unsigned long 的长度时,才可以使用 to_ulong 操作:

unsigned long ulong = bitvec3.to_ulong();

cout "ulong = " ulong endl;

to_ulong 操作主要用于把 bitset 对象转到 C 风格或标准 C++ 之前风格的程序上。如果 bitset 对象包 含的二进制位数超过 unsigned long 长度, 将会产生运行时异常。

输出二进制位
可以用输出操作符输出 bitset 对象中的位模式:

bitset 32 bitvec2(0xffff); // bits 0 ... 15 are set to 1; 16 ... 31 are 0

cout "bitvec2: " bitvec2 endl;

爱上c++的第十三天:STL标准库 哈哈哈,今天终于可以更新关于c++知识的最后一个部分的知识了,后面的话我应该就会更新一些关于python和机器学习还有数据结构方面的东西了,毕竟写这个东西也是很花时间的,希望大家多多支持,大家的认可,真的能让我大受鼓舞的,也是一直督促我前进的动力。
​​软件开发入门教程网之​​C++ 标准库 • 标准函数库: 这个库是由通用的、独立的、不属于任何类的函数组成的。函数库继承自 C 语言。 • 面向对象类库: 这个库是类及其相关函数的集合。 C++ 标准库包含了所有的 C 标准库,为了支持类型安全,做了一定的添加和修改。
【Example】C++ 标准库智能指针 unique_ptr 与 shared_ptr 在现代 C + + 编程中,标准库包含智能指针,智能指针可处理对其拥有的内存的分配和删除,这些指针用于帮助确保程序不会出现内存和资源泄漏,并具有异常安全。C 样式编程的一个主要 bug 类型是内存泄漏。 泄漏通常是由于为分配的内存的调用失败引起的 delete new。 现代 C++ 强调“资源获取即初始化”(RAII) 原则。 其理念很简单。 资源(堆内存、文件句柄、套接字等)应由对象“拥有”。 该对象在其构造函数中创建或接收新分配的资源,并在其析构函数中将此资源删除。 RAII 原则可确保当所属对象超出范围时,所有资源都能正确返回到操作系统。 --Microsoft Docs