zl程序教程

您现在的位置是:首页 >  其它

当前栏目

线性代数(第六版)同济大学 习题一 (7-9题)个人解答

个人 习题 解答 线性代数 同济大学
2023-09-11 14:22:44 时间

线性代数(第六版)同济大学 习题一(7-9题)

 

7.  设 n 阶行列式 D = d e t ( a i j ) ,把 D 上下翻转、或逆时针旋转 9 0 ∘ 、或依副对角线翻转、依次得      D 1 = ∣ a n 1 ⋅ ⋅ ⋅ a n n ⋮ ⋮ a 11 ⋅ ⋅ ⋅ a 1 n ∣ , D 2 = ∣ a 1 n ⋅ ⋅ ⋅ a n n ⋮ ⋮ a 11 ⋅ ⋅ ⋅ a n 1 ∣ , D 3 = ∣ a n n ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a 11 ∣     证明 D 1 = D 2 = ( − 1 ) n ( n − 1 ) 2 D , D 3 = D . \begin{aligned}&7. \ 设n阶行列式D=det(a_{ij}),把D上下翻转、或逆时针旋转90^{\circ}、或依副对角线翻转、依次得\\\\&\ \ \ \ D_1=\left|\begin{array}{cccc}a_{n1} &\cdot\cdot\cdot &a_{nn}\\\\\vdots & &\vdots\\\\a_{11} &\cdot\cdot\cdot &a_{1n}\end{array}\right|,D_2=\left|\begin{array}{cccc}a_{1n} &\cdot\cdot\cdot &a_{nn}\\\\\vdots & &\vdots\\\\a_{11} &\cdot\cdot\cdot &a_{n1}\end{array}\right|,D_3=\left|\begin{array}{cccc}a_{nn} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{11}\end{array}\right|\\\\&\ \ \ \ 证明D_1=D_2=(-1)^{\frac{n(n-1)}{2}}D,D_3=D.&\end{aligned} 7. n阶行列式D=det(aij),把D上下翻转、或逆时针旋转90、或依副对角线翻转、依次得    D1= an1a11anna1n D2= a1na11annan1 D3= annan1a1na11     证明D1=D2=(1)2n(n1)DD3=D.

解:

   D 1 的第 n 行依次与第 n − 1 行 ⋅ ⋅ ⋅ 第 1 行对换(共 n − 1 次对换),再把第 n 行依次与第 n − 1 行 ⋅ ⋅ ⋅ 第 2 行对换   (共 n − 2 次对换),一直经过共 ( n − 1 ) + ( n − 2 ) + ⋅ ⋅ ⋅ + 1 = n ( n − 1 ) 2 次行的对换得到    ∣ a 11 ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a n n ∣ ,因此 D 1 = ( − 1 ) n ( n − 1 ) 2 D    D 2 进行行列式转置,得到 D 2 = D 2 T = ∣ a 1 n ⋅ ⋅ ⋅ a 11 ⋮ ⋮ a n n ⋅ ⋅ ⋅ a n 1 ∣ , D 2 T 的第 n 列依次与第 n − 1 列 ⋅ ⋅ ⋅ 第 1 列对换   (共 n − 1 次对换),再把第 n 列依次与第 n − 1 列 ⋅ ⋅ ⋅ 第 2 列对换(共 n − 2 次对换),   一直经过共 ( n − 1 ) + ( n − 2 ) + ⋅ ⋅ ⋅ + 1 = n ( n − 1 ) 2 次列的对换得到    ∣ a 11 ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a n n ∣ ,因此 D 2 = ( − 1 ) n ( n − 1 ) 2 D    D 3 = D 3 T = ∣ a n n ⋅ ⋅ ⋅ a n 1 ⋮ ⋮ a 1 n ⋅ ⋅ ⋅ a 11 ∣ ,先对行对换,再对列对换,得 ∣ a 11 ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a n n ∣ ,因此 D 3 = D . \begin{aligned} &\ \ D_1的第n行依次与第n-1行\cdot\cdot\cdot第1行对换(共n-1次对换),再把第n行依次与第n-1行\cdot\cdot\cdot第2行对换\\\\ &\ \ (共n-2次对换),一直经过共(n-1)+(n-2)+\cdot\cdot\cdot+1=\frac{n(n-1)}{2}次行的对换得到\\\\ &\ \ \left|\begin{array}{cccc}a_{11} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{nn}\end{array}\right|,因此D_1=(-1)^{\frac{n(n-1)}{2}}D\\\\ &\ \ D_2进行行列式转置,得到D_2=D_2^T=\left|\begin{array}{cccc}a_{1n} &\cdot\cdot\cdot &a_{11}\\\\\vdots & &\vdots\\\\a_{nn} &\cdot\cdot\cdot &a_{n1}\end{array}\right|,D_2^T的第n列依次与第n-1列\cdot\cdot\cdot第1列对换\\\\ &\ \ (共n-1次对换),再把第n列依次与第n-1列\cdot\cdot\cdot第2列对换(共n-2次对换),\\\\ &\ \ 一直经过共(n-1)+(n-2)+\cdot\cdot\cdot+1=\frac{n(n-1)}{2}次列的对换得到\\\\ &\ \ \left|\begin{array}{cccc}a_{11} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{nn}\end{array}\right|,因此D_2=(-1)^{\frac{n(n-1)}{2}}D\\\\ &\ \ D_3=D_3^T=\left|\begin{array}{cccc}a_{nn} &\cdot\cdot\cdot &a_{n1}\\\\\vdots & &\vdots\\\\a_{1n} &\cdot\cdot\cdot &a_{11}\end{array}\right|,先对行对换,再对列对换,得\left|\begin{array}{cccc}a_{11} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{nn}\end{array}\right|,因此D_3=D. & \end{aligned}   D1的第n行依次与第n11行对换(共n1次对换),再把第n行依次与第n12行对换  (共n2次对换),一直经过共(n1)+(n2)++1=2n(n1)次行的对换得到   a11an1a1nann ,因此D1=(1)2n(n1)D  D2进行行列式转置,得到D2=D2T= a1nanna11an1 D2T的第n列依次与第n11列对换  (共n1次对换),再把第n列依次与第n12列对换(共n2次对换),  一直经过共(n1)+(n2)++1=2n(n1)次列的对换得到   a11an1a1nann ,因此D2=(1)2n(n1)D  D3=D3T= anna1nan1a11 ,先对行对换,再对列对换,得 a11an1a1nann ,因此D3=D.


8.  计算下列各行列式( D k 为 k 阶行列式): \begin{aligned}&8. \ 计算下列各行列式(D_k为k阶行列式):&\end{aligned} 8. 计算下列各行列式(Dkk阶行列式):

   ( 1 )    D n = ∣ a 1 ⋱ 1 a ∣ ,其中对角线上元素都是 a ,未写出的元素都是 0 ;    ( 2 )    D n = ∣ x a ⋅ ⋅ ⋅ a a x ⋅ ⋅ ⋅ a ⋮ ⋮ a a ⋅ ⋅ ⋅ x ∣ ;    ( 3 )    D n + 1 = ∣ a n ( a − 1 ) n ⋅ ⋅ ⋅ ( a − n ) n a n − 1 ( a − 1 ) n − 1 ⋅ ⋅ ⋅ ( a − n ) n − 1 ⋮ ⋮ ⋮ a a − 1 ⋯ a − n 1 1 ⋯ 1 ∣ ,提示:利用范德蒙德行列式的结果;    ( 4 )    D 2 n = ∣ a n b n ⋱ ⋱ a 1 b 1 c 1 d 1 ⋱ ⋱ c n d n ∣ ,其中未写出的元素都是 0 ;    ( 5 )    D n = ∣ 1 + a 1 a 1 ⋯ a 1 a 2 1 + a 2 ⋯ a 2 ⋮ ⋮ ⋮ a n a n ⋯ 1 + a n ∣ ;      ( 6 )    D n = d e t ( a i j ) ,其中 a i j = ∣ i − j ∣ ;    ( 7 )    D n = ∣ 1 + a 1 1 ⋯ 1 1 1 + a 2 ⋯ 1 ⋮ ⋮ ⋮ 1 1 ⋯ 1 + a n ∣ ,其中 a 1 a 2 ⋯ a n ≠ 0. \begin{aligned} &\ \ (1)\ \ D_n=\left|\begin{array}{cccc}a & &1\\\\&\ddots\\\\1 & &a\end{array}\right|,其中对角线上元素都是a,未写出的元素都是0;\\\\ &\ \ (2)\ \ D_n=\left|\begin{array}{cccc}x &a &\cdot\cdot\cdot &a\\\\a &x &\cdot\cdot\cdot &a\\\\\vdots & & &\vdots\\\\a &a &\cdot\cdot\cdot &x\end{array}\right|;\\\\ &\ \ (3)\ \ D_{n+1}=\left|\begin{array}{cccc}a^n &(a-1)^n &\cdot\cdot\cdot &(a-n)^n\\\\a^{n-1} &(a-1)^{n-1} &\cdot\cdot\cdot &(a-n)^{n-1}\\\\\vdots &\vdots & &\vdots\\\\a &a-1 &\cdots &a-n\\\\1 &1 &\cdots &1\end{array}\right|,提示:利用范德蒙德行列式的结果;\\\\ &\ \ (4)\ \ D_{2n}=\left|\begin{array}{cccc}a_n & & & & &b_n\\\\ &\ddots & & &\ddots &\\\\ & &a_1 &b_1& &\\\\ & &c_1 &d_1& &\\\\ &\ddots & & &\ddots &\\\\c_n & & & & &d_n\end{array}\right|,其中未写出的元素都是0;\\\\ &\ \ (5)\ \ D_n=\left|\begin{array}{cccc}1+a_1 &a_1 &\cdots &a_1\\\\a_2 &1+a_2 &\cdots &a_2\\\\\vdots &\vdots & &\vdots\\\\a_n &a_n &\cdots &1+a_n\end{array}\right|;\\\ &\ \ (6)\ \ D_n=det(a_{ij}),其中a_{ij}=|i-j|;\\\\ &\ \ (7)\ \ D_n=\left|\begin{array}{cccc}1+a_1 &1 &\cdots &1\\\\1 &1+a_2 &\cdots &1\\\\\vdots &\vdots & &\vdots\\\\1 &1 &\cdots &1+a_n\end{array}\right|,其中a_1a_2\cdots a_n\neq 0. & \end{aligned}    (1)  Dn= a11a ,其中对角线上元素都是a,未写出的元素都是0  (2)  Dn= xaaaxaaax   (3)  Dn+1= anan1a1(a1)n(a1)n1a11(an)n(an)n1an1 ,提示:利用范德蒙德行列式的结果;  (4)  D2n= ancna1c1b1d1bndn ,其中未写出的元素都是0  (5)  Dn= 1+a1a2ana11+a2ana1a21+an   (6)  Dn=det(aij),其中aij=ij  (7)  Dn= 1+a11111+a21111+an ,其中a1a2an=0.

解:

   ( 1 )   D n = ∣ a 1 ⋱ 1 a ∣ = r 1 − r n ∣ a − 1 − ( a − 1 ) ⋱ 1 a ∣ = c n + c 1 ∣ a − 1 0 ⋱ 1 a + 1 ∣ = ( a 2 − 1 ) a n − 2 .    ( 2 )   D n = ∣ x a ⋅ ⋅ ⋅ a a x ⋅ ⋅ ⋅ a ⋮ ⋮ a a ⋅ ⋅ ⋅ x ∣ = r n − r n − 1 , r n − 1 − r n − 2 ⋯ r 2 − r 1 ∣ x a ⋅ ⋅ ⋅ a a − ( x − a ) x − a ⋅ ⋅ ⋅ 0 0 0 − ( x − a ) ⋅ ⋅ ⋅ 0 0 ⋮ ⋮ ⋮ 0 0 ⋅ ⋅ ⋅ − ( x − a ) x − a ∣          = c n − 1 + c n , c n − 2 + r n − 1 ⋯ c 1 + c 2 ∣ x + ( n − 1 ) a ( n − 1 ) a ⋅ ⋅ ⋅ 2 a a 0 x − a ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋮ ⋮ ⋮ 0 0 ⋅ ⋅ ⋅ 0 x − a ∣ = [ x + ( n − 1 ) a ] ( x − a ) n − 1    ( 3 )  行列式上下翻转,再左右翻转,得          D n + 1 = ∣ 1 1 ⋯ 1 a − n a − n + 1 ⋯ a ⋮ ⋮ ⋮ ( a − n ) n − 1 ( a − n + 1 ) n − 1 ⋅ ⋅ ⋅ a n − 1 ( a − n ) n ( a − n + 1 ) n ⋅ ⋅ ⋅ a n ∣ = ∏ 1 ≤ j < i ≤ n + 1 ( i − j )    ( 4 )   D 2 n 的第 2 n 行依次与第 2 n − 1 行 ⋯ 第 2 行对换(作 2 n − 2 次相邻两行的对换),         再把第 2 n 列依次与第 2 n − 1 列 ⋯ 第 2 列对换,得          D 2 n = ∣ a n b n 0 ⋯ 0 c n d n 0 ⋯ 0 0 0 a 1 b 1 ⋱ ⋱ ⋮ ⋮ a 1 b 1 c 1 d 1 ⋱ ⋱ 0 0 c 1 d 1 ∣ = ( a n d n − b n c n ) D 2 ( n − 1 ) ,递推,得          D 2 n = ( a n d n − b n c n ) ⋯ ( a 1 d 1 − b 1 c 1 ) = ∏ i = 1 n ( a i d i − b i c i )    ( 5 )   D n = ∣ 1 + a 1 a 1 ⋯ a 1 a 2 1 + a 2 ⋯ a 2 ⋮ ⋮ ⋮ a n a n ⋯ 1 + a n ∣ = c 1 − c 2 , c 2 − c 3 ⋯ c n − 1 − c n ∣ 1 0 0 ⋯ a 1 − 1 1 0 ⋯ a 2 0 − 1 1 ⋯ a 3 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 + a n ∣          = r 2 + r 1 , r 3 + r 2 ⋯ r n + r n − 1 ∣ 1 0 0 ⋯ a 1 0 1 0 ⋯ a 1 + a 2 0 0 1 ⋯ a 1 + a 2 + a 3 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 + a 1 + a 2 + ⋯ + a n ∣ = ∑ i = 1 n a i + 1    ( 6 )   D n = ∣ 0 1 2 ⋯ n − 1 1 0 1 ⋯ n − 2 2 1 0 ⋯ n − 3 ⋮ ⋮ ⋮ ⋮ n − 1 n − 2 n − 3 ⋯ 0 ∣ = r n − r n − 1 , r n − 1 − r n − 2 ⋯ r 2 − r 1 ∣ 0 1 ⋯ n − 2 n − 1 1 − 1 ⋯ − 1 − 1 1 1 ⋯ − 1 − 1 ⋮ ⋮ ⋮ ⋮ 1 1 ⋯ 1 − 1 ∣          = c 1 + c n , c 2 + c n , ⋯ c n − 1 + c n ∣ n − 1 n ⋯ 2 n − 3 n − 1 0 − 2 ⋯ − 2 − 1 0 0 ⋯ − 2 − 1 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 − 1 ∣ = ( − 1 ) n − 1 ( n − 1 ) 2 n − 2 .    ( 7 )   D n = ∣ 1 + a 1 1 ⋯ 1 1 1 + a 2 ⋯ 1 ⋮ ⋮ ⋮ 1 1 ⋯ 1 + a n ∣ = r 2 − r 1 , r 3 − r 1 ⋯ r n − r 1 ∣ 1 + a 1 1 ⋯ 1 − a 1 a 2 ⋮ ⋱ − a 1 a n ∣          = c 1 + a 1 a 2 c 2 , c 1 + a 1 a 3 c 3 , ⋯ c 1 + a 1 a n c n ∣ b 1 ⋯ 1 0 a 2 ⋮ ⋱ 0 a n ∣ ,         因为 b = 1 + a 1 + a 1 ∑ i = 2 n 1 a i = a 1 ( 1 + ∑ i = 1 n 1 a i ) ,所以 D n = a 1 ⋯ a n ( 1 + ∑ i = 1 n 1 a i ) . \begin{aligned} &\ \ (1)\ D_n=\left|\begin{array}{cccc}a & &1\\\\&\ddots\\\\1 & &a\end{array}\right|\xlongequal{r_1-r_n}\left|\begin{array}{cccc}a-1 & &-(a-1)\\\\&\ddots\\\\1 & &a\end{array}\right|\xlongequal{c_n+c_1}\left|\begin{array}{cccc}a-1 & &0\\\\&\ddots\\\\1 & &a+1\end{array}\right|=(a^2-1)a^{n-2}.\\\\ &\ \ (2)\ D_n=\left|\begin{array}{cccc}x &a &\cdot\cdot\cdot &a\\\\a &x &\cdot\cdot\cdot &a\\\\\vdots & & &\vdots\\\\a &a &\cdot\cdot\cdot &x\end{array}\right|\xlongequal{r_n-r_{n-1}, r_{n-1}-r_{n-2}\cdots r_2-r_1}\left|\begin{array}{cccc}x &a &\cdot\cdot\cdot &a &a\\\\-(x-a) &x-a &\cdot\cdot\cdot & 0 &0\\\\0 &-(x-a) &\cdot\cdot\cdot & 0 &0\\\\\vdots & & &\vdots &\vdots\\\\0 &0 &\cdot\cdot\cdot &-(x-a) &x-a\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{c_{n-1}+c_n, c_{n-2}+r_{n-1}\cdots c_1+c_2}\left|\begin{array}{cccc}x+(n-1)a &(n-1)a &\cdot\cdot\cdot &2a &a\\\\0 &x-a &\cdot\cdot\cdot & 0 &0\\\\0 &0 &\cdot\cdot\cdot & 0 &0\\\\\vdots & & &\vdots &\vdots\\\\0 &0 &\cdot\cdot\cdot &0 &x-a\end{array}\right|=[x+(n-1)a](x-a)^{n-1}\\\\ &\ \ (3)\ 行列式上下翻转,再左右翻转,得\\\\ &\ \ \ \ \ \ \ \ D_{n+1}=\left|\begin{array}{cccc}1 &1 &\cdots &1\\\\a-n &a-n+1 &\cdots &a\\\\\vdots &\vdots & &\vdots\\\\(a-n)^{n-1} &(a-n+1)^{n-1} &\cdot\cdot\cdot &a^{n-1}\\\\(a-n)^n &(a-n+1)^n &\cdot\cdot\cdot &a^n\end{array}\right|=\prod_{1 \le j \lt i \le n+1}(i-j)\\\\ &\ \ (4)\ D_{2n}的第2n行依次与第2n-1行\cdots第2行对换(作2n-2次相邻两行的对换),\\\\ &\ \ \ \ \ \ \ \ 再把第2n列依次与第2n-1列\cdots第2列对换,得\\\\ &\ \ \ \ \ \ \ \ D_{2n}=\left|\begin{array}{cccc}a_n &b_n &0 & &\cdots & & &0\\\\c_n & d_n &0 & &\cdots & & &0\\\\0 &0 &a_1 & & & & &b_1\\\\ & & &\ddots & & &\ddots &\\\\\vdots &\vdots & & &a_1 &b_1& &\\\\ & & & &c_1 &d_1& &\\\\ & & &\ddots & & &\ddots &\\\\0 &0 &c_1 & & & & &d_1\end{array}\right|=(a_nd_n-b_nc_n)D_{2(n-1)},递推,得\\\\ &\ \ \ \ \ \ \ \ D_{2n}=(a_nd_n-b_nc_n)\cdots(a_1d_1-b_1c_1)=\prod_{i=1}^{n}(a_id_i-b_ic_i)\\\\ &\ \ (5)\ D_n=\left|\begin{array}{cccc}1+a_1 &a_1 &\cdots &a_1\\\\a_2 &1+a_2 &\cdots &a_2\\\\\vdots &\vdots & &\vdots\\\\a_n &a_n &\cdots &1+a_n\end{array}\right|\xlongequal{c_1-c_2, c_2-c_3\cdots c_{n-1}-c_n}\left|\begin{array}{cccc}1 &0 &0 &\cdots &a_1\\\\-1 &1 &0 &\cdots &a_2\\\\0 &-1 &1 &\cdots &a_3\\\\\vdots &\vdots &\vdots & &\vdots\\\\0 &0 &0 &\cdots &1+a_n\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{r_2+r_1, r_3+r_2\cdots r_n+r_{n-1}}\left|\begin{array}{cccc}1 &0 &0 &\cdots &a_1\\\\0 &1 &0 &\cdots &a_1+a_2\\\\0 &0 &1 &\cdots &a_1+a_2+a_3\\\\\vdots &\vdots &\vdots & &\vdots\\\\0 &0 &0 &\cdots &1+a_1+a_2+\cdots+a_n\end{array}\right|=\sum_{i=1}^na_i+1\\\\ &\ \ (6)\ D_n=\left|\begin{array}{cccc}0 &1 &2 &\cdots &n-1\\\\1 &0 &1 &\cdots &n-2\\\\2 &1 &0 &\cdots &n-3\\\\\vdots &\vdots &\vdots & &\vdots\\\\n-1 &n-2 &n-3 &\cdots &0\end{array}\right|\xlongequal{r_n-r_{n-1}, r_{n-1}-r_{n-2}\cdots r_2-r_1}\left|\begin{array}{cccc}0 &1 &\cdots &n-2 &n-1\\\\1 &-1 &\cdots &-1 &-1\\\\1 &1 &\cdots &-1 &-1\\\\\vdots &\vdots & &\vdots &\vdots\\\\1 &1 &\cdots &1 &-1\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{c_1+c_n, c_2+c_n, \cdots c_{n-1}+c_n}\left|\begin{array}{cccc}n-1 &n &\cdots &2n-3 &n-1\\\\0 &-2 &\cdots &-2 &-1\\\\0 &0 &\cdots &-2 &-1\\\\\vdots &\vdots & &\vdots &\vdots\\\\0 &0 &\cdots &0 &-1\end{array}\right|=(-1)^{n-1}(n-1)2^{n-2}.\\\\ &\ \ (7)\ D_n=\left|\begin{array}{cccc}1+a_1 &1 &\cdots &1\\\\1 &1+a_2 &\cdots &1\\\\\vdots &\vdots & &\vdots\\\\1 &1 &\cdots &1+a_n\end{array}\right|\xlongequal{r_2-r_1, r_3-r_1\cdots r_n-r_1}\left|\begin{array}{cccc}1+a_1 &1 &\cdots &1\\\\-a_1 &a_2 & &\\\\\vdots & &\ddots &\\\\-a_1 & & &a_n\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{c_1+\frac{a_1}{a_2}c_2, c_1+\frac{a_1}{a_3}c_3, \cdots c_1+\frac{a_1}{a_n}c_n}\left|\begin{array}{cccc}b &1 &\cdots &1\\\\0 &a_2 & &\\\\\vdots & &\ddots &\\\\0 & & &a_n\end{array}\right|,\\\\ &\ \ \ \ \ \ \ \ 因为b=1+a_1+a_1\sum_{i=2}^n\frac{1}{a_i}=a_1\left(1+\sum_{i=1}^n\frac{1}{a_i}\right),所以D_n=a_1\cdots a_n\left(1+\sum_{i=1}^n\frac{1}{a_i}\right). & \end{aligned}   (1) Dn= a11a r1rn a11(a1)a cn+c1 a110a+1 =(a21)an2.  (2) Dn= xaaaxaaax rnrn1,rn1rn2r2r1 x(xa)00axa(xa)0a00(xa)a00xa         cn1+cn,cn2+rn1c1+c2 x+(n1)a000(n1)axa002a000a00xa =[x+(n1)a](xa)n1  (3) 行列式上下翻转,再左右翻转,得        Dn+1= 1an(an)n1(an)n1an+1(an+1)n1(an+1)n1aan1an =1j<in+1(ij)  (4) D2n的第2n行依次与第2n12行对换(作2n2次相邻两行的对换),        再把第2n列依次与第2n12列对换,得        D2n= ancn00bndn0000a1c1a1c1b1d100b1d1 =(andnbncn)D2(n1),递推,得        D2n=(andnbncn)(a1d1b1c1)=i=1n(aidibici)  (5) Dn= 1+a1a2ana11+a2ana1a21+an c1c2,c2c3cn1cn 110001100010a1a2a31+an         r2+r1,r3+r2rn+rn1 100001000010a1a1+a2a1+a2+a31+a1+a2++an =i=1nai+1  (6) Dn= 012n1101n2210n3n1n2n30 rnrn1,rn1rn2r2r1 01111111n2111n1111         c1+cn,c2+cn,cn1+cn n1000n2002n3220n1111 =(1)n1(n1)2n2.  (7) Dn= 1+a11111+a21111+an r2r1,r3r1rnr1 1+a1a1a11a21an         c1+a2a1c2,c1+a3a1c3,c1+ana1cn b001a21an         因为b=1+a1+a1i=2nai1=a1(1+i=1nai1),所以Dn=a1an(1+i=1nai1).


9.  设 D = ∣ 3 1 − 1 2 − 5 1 3 − 4 2 0 1 − 1 1 − 5 3 − 3 ∣ , D 的 ( i ,   j ) 元的代数余子式记作 A i j ,求 A 31 + 3 A 32 − 2 A 33 + 2 A 34 . \begin{aligned}&9. \ 设D=\left|\begin{array}{cccc}3 &1 &-1 &2\\\\-5 &1 &3 &-4\\\\2 &0 &1 &-1\\\\1 &-5 &3 &-3\end{array}\right|,D的(i, \ j)元的代数余子式记作A_{ij},求A_{31}+3A_{32}-2A_{33}+2A_{34}.&\end{aligned} 9. D= 3521110513132413 D(i, j)元的代数余子式记作Aij,求A31+3A322A33+2A34.

解:

   A 31 + 3 A 32 − 2 A 33 + 2 A 34 = ∣ 3 1 − 1 2 − 5 1 3 − 4 1 3 − 2 2 1 − 5 3 − 3 ∣ = c 4 + c 3 ∣ 3 1 − 1 1 − 5 1 3 − 1 1 3 − 2 0 1 − 5 3 0 ∣ = r 2 + r 1 ∣ 3 1 − 1 1 − 2 2 2 0 1 3 − 2 0 1 − 5 3 0 ∣    = r 2 / 2 , 按 c 4 展开 2 ∣ 1 − 1 − 1 1 3 − 2 1 − 5 3 ∣ = r 2 − r 1 , r 3 − r 1 2 ∣ 1 − 1 − 1 0 4 − 1 0 − 4 4 ∣ = r 3 + r 2 2 ∣ 1 − 1 − 1 0 4 − 1 0 0 3 ∣ = 24 \begin{aligned} &\ \ A_{31}+3A_{32}-2A_{33}+2A_{34}=\left|\begin{array}{cccc}3 &1 &-1 &2\\\\-5 &1 &3 &-4\\\\1 &3 &-2 &2\\\\1 &-5 &3 &-3\end{array}\right|\xlongequal{c_4+c_3}\left|\begin{array}{cccc}3 &1 &-1 &1\\\\-5 &1 &3 &-1\\\\1 &3 &-2 &0\\\\1 &-5 &3 &0\end{array}\right|\xlongequal{r_2+r_1}\left|\begin{array}{cccc}3 &1 &-1 &1\\\\-2 &2 &2 &0\\\\1 &3 &-2 &0\\\\1 &-5 &3 &0\end{array}\right|\\\\ &\ \ \xlongequal{r_2/2, 按c_4展开}2\left|\begin{array}{cccc}1 &-1 &-1\\\\1 &3 &-2\\\\1 &-5 &3\end{array}\right|\xlongequal{r_2-r_1, r_3-r_1}2\left|\begin{array}{cccc}1 &-1 &-1\\\\0 &4 &-1\\\\0 &-4 &4\end{array}\right|\xlongequal{r_3+r_2}2\left|\begin{array}{cccc}1 &-1 &-1\\\\0 &4 &-1\\\\0 &0 &3\end{array}\right|=24 & \end{aligned}   A31+3A322A33+2A34= 3511113513232423 c4+c3 3511113513231100 r2+r1 3211123512231000   r2/2,c4展开 2 111135123 r2r1,r3r1 2 100144114 r3+r2 2 100140113 =24