zl程序教程

您现在的位置是:首页 >  其它

当前栏目

ComputeColStats UDF中 近似算法的介绍

介绍 UDF
2023-09-11 14:21:16 时间
一,前面的话 表和列的统计信息对CBO的结果有着极大地影响,能够高效和准确的收集统计信息是极其重要的。但高效和准确是矛盾的,更准确的统计信息往往需要更多的计算,我们能做的是在高效和准确之间找到更好的平衡。
一,前面的话

表和列的统计信息对CBO的结果有着极大地影响,能够高效和准确的收集统计信息是极其重要的。但高效和准确是矛盾的,更准确的统计信息往往需要更多的计算,我们能做的是在高效和准确之间找到更好的平衡。接下来的内容是关于目前在ComputeColStats中用的一些近似算法。

二,收集的内容

目前针对列主要会收集以下统计信息:
cntRows : 列中总数据个数,包括nulll值
avgColLen :列的平均长度
maxColLEN :列的最大长度
minValue :列的最小值
maxValue :列的最大值
numNulls :列中null值个数
numFalses :如果boolean型,false值的个数
numTrues :如果boolean型,true值的个数
countDistinct :不同值的个数
topK :topk值的个数,数据倾斜的标志
一般说来除了countDistinct 和topK 以外的统计信息基本上消耗资源并不大(minValue和maxValue存在大量比较,也会消耗不少资源),问题主要集中在countDistinct 和topK上。下面要描述的近似算法也是主要针对这两个点。

三,countDistinct 实现

算法:Flajolet-Martin
论文见:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.3869 rep=rep1 type=pdf
简介
对于n个object,如果Hash结果中,结尾(或开头)连续0的长度的最大值是m,那么,可以估计唯一的object的数据量是2^m个。
假设有一个非常好的hash函数,能够将object哈希成一个二进制数0101……,并且非常均匀的打散到二进制空间。如果有8个唯一的object,将它们全部Hash之后,结果按照概率应该有4个object的Hash值以0结尾,这4个Hash值又应该有2个结尾是00,这2个中又有1个结尾是000。
采用多个独立的hash函数,每个hash函数分别计算最长0比特序列,然后求平均值,减少误差。
hash函数的个数基本上就决定了Flajolet-Martin算法的效率和准确度,后面有针对不同hash函数个数的测试结果。

四,topK实现

算法:Space-Saving
伪代码:
a01

五,基本性能测试

a02
结论:
1,Base Stats对性能也是存在影响的,主要是minValue和maxValue的计算,尤其是collen较长的情况下
2,一般说来distinct相对topK会更慢些,除非在collen较长的时候,topK也是基于比较来的
3,随着列个数的增加,收集stats消耗的时间也线性的增加
4,distinct的计算基于hash,而topK的计算基于比较,所以前者对collen并不敏感

六,不同hash函数个数执行效率的测试

a03
结论:
基本上随着hash函数个数的增加线性的增长

七,不同hash函数个数准确性的测试

a04
结论:
hash函数个数增加到32个后,准确率基本能满足需求

八,不同hash函数个数的测试总结

a05
结论:选择32个hash函数计算distinct,平衡执行效率及准确性

九,sample算法的选择

1,必要性:
基于前面对执行效率的测试,为了避免对任务产生过大的影响,Sample是一定要做的
2,Sample算法的要求:
效率,随机
3,Sample的选择:
采用buildin的sample函数实现
前提是假设数据分布是随机的
4,Sample的影响:
对某些stats基本没影响,比如说avgColLen,maxColLen,minValue,maxValue
对某些stats有些影响,比如说cntRows, numNulls,numFalses,numTrues,topK
对countDistinct影响比较大,并且countDistinct也更加重要,需要特别注意
5,Sample后countDistinct的处理:
根据Sample的countDistinct预测完整数据的countDistinct,采样,拟合

基本思路如下图:
a06
希望通过对sample内的数据进行采样,利用这些采样点描绘全部数据的形态,达到基本准确预测全部数据distinct的结果。这是个美好的愿望,在sample的数据相对较少的时候,总有些情况下sample下的形态跟完整数据的形态存在较大的差异,此时的误差会比较大。

十,不同sample比例执行效率的测试

a07
采样比例在1/100后执行时间差距不大,此时最大的消耗在数据读取上,而不针对distinct的计算。

十一,不同sample比例准确性的测试

a08
针对表meta.m_fuxi_instance表中的列project_name,odps_inst_id做了些测试,结果如上。看起来1/50的结果还是可以接受的。
多说一句,对于distinct来说,并不需要完全的正确,10倍以内的差距目前来说是可以接受的,这也是我们可以通过采样来提高效率的前提。

十二,按sample比例为1/25为例的计算结果

a09

执行时间和准确率基本都可以满足现在需求

十三,后续的工作

对于准确率的提升是后续需要做的事情之一,这关键还是如何在sample里面找带更有代表性的点来预测全部数据的形态。但,要作好心理准备,对于某些场景来说,可能就找不到这样的方法,需要接受一定范围的误差。


(4)SparkSQL中如何定义UDF和使用UDF Spark SQL中用户自定义函数,用法和Spark SQL中的内置函数类似;是saprk SQL中内置函数无法满足要求,用户根据业务需求自定义的函数。 首先定义一个UDF函数:
hive中udf的开发 首先什么是UDF,UDF的全称为user-defined function,用户定义函数,为什么有它的存在呢?有的时候 你要写的查询无法轻松地使用Hive提供的内置函数来表示,通过写UDF,Hive就可以方便地插入用户写的处理代码并在查询中使用它们,相当于在HQL(Hive SQL)中自定义一些函数,首先UDF必须用java语言编写,Hive本身就是用java写的,sparksql中UDF的使用移步到这 编写UDF需要下面两个步骤:
Hive中的UDF详解 hive作为一个sql查询引擎,自带了一些基本的函数,比如count(计数),sum(求和),有时候这些基本函数满足不了我们的需求,这时候就要写hive hdf(user defined funation),又叫用户自定义函数。
Hive基于UDF进行文本分词 Hive作为一个sql查询引擎,自带了一些基本的函数,比如count(计数),sum(求和),有时候这些基本函数满足不了我们的需求,这时候就要写hive hdf(user defined funation),又叫用户自定义函数。
Python实现MaxCompute UDF/UDAF/UDTF 参数与返回值类型 参数与返回值通过如下方式指定: @odps.udf.annotate(signature) Python UDF目前支持ODPS SQL数据类型有:bigint, string, double, boolean和datetime。
MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。