zl程序教程

您现在的位置是:首页 >  前端

当前栏目

【10】动态链接:程序内部的“共享单车”

链接程序 10 动态 共享 内部 单车
2023-09-11 14:15:48 时间

【计算机组成原理】学习笔记——总目录


提示: 本节理解起来比较吃力【具体过程比较模糊】,想完全理解需阅读《程序员的自我修养:链接、装载和库》的第 7 章


引言

我们之前讲过,程序的链接,是把对应的不同文件内的代码段,合并到一起,成为最后的可执行文件。这个链接的方式,让我们在写代码的时候做到了“复用”。同样的功能代码只要写一次,然后提供给很多不同的程序进行链接就行了。

但是,如果我们有很多个程序都要通过装载器装载到内存里面,那里面链接好的同样的功能代码,也都需要再装载一遍,再占一遍内存空间。

在这里插入图片描述

一、链接可以分动、静,共享运行省内存

说起来,最根本的问题其实就是内存空间不够用。如果我们能够让同样功能的代码,在不同的程序里面,不需要各占一份内存空间,那该有多好啊!

这个思路就引入一种新的链接方法,叫作动态链接(Dynamic Link)。相应的,我们之前说的合并代码段的方法,就是静态链接(Static Link)

在动态链接的过程中,我们想要“链接”的,不是存储在硬盘上的目标文件代码,而是加载到内存中的共享库(Shared Libraries)。顾名思义,这里的共享库重在“共享“这两个字。

这个加载到内存中的共享库会被很多个程序的指令调用到。在 Windows 下,这些共享库文件就是.dll 文件,也就是 Dynamic-Link Libary(DLL,动态链接库)。在 Linux 下,这些共享库文件就是.so文件,也就是 Shared Object(一般我们也称之为动态链接库)。这两大操作系统下的文件名后缀,一个用了“动态链接”的意思,另一个用了“共享”的意思,正好覆盖了两方面的含义。

在这里插入图片描述

二、地址无关很重要,相对地址解烦恼

不过,要想要在程序运行的时候共享代码,也有一定的要求,就是这些机器码必须是“地址无关”的。也就是说,我们编译出来的共享库文件的指令代码,是地址无关码(Position-Independent Code)。换句话说就是,这段代码,无论加载在哪个内存地址,都能够正常执行。如果不是这样的代码,就是地址相关的代码。

你可以想想,大部分函数库其实都可以做到地址无关,因为它们都接受特定的输入,进行确定的操作,然后给出返回结果就好了。无论是实现一个向量加法,还是实现一个打印的函数,这些代码逻辑和输入的数据在内存里面的位置并不重要。

在这里插入图片描述
对于所有动态链接共享库的程序来讲,虽然我们的共享库用的都是同一段物理内存地址,但是在不同的应用程序里,它所在的虚拟内存地址是不同的

那么问题来了,我们要怎么样才能做到,动态共享库编译出来的代码指令,都是地址无关码呢?

动态代码库内部的变量和函数调用都很容易解决,我们只需要使用相对地址(Relative Address)就好了。各种指令中使用到的内存地址,给出的不是一个绝对的地址空间,而是一个相对于当前指令偏移量的内存地址。因为整个共享库是放在一段连续的虚拟内存地址中的,无论装载到哪一段地址,不同指令之间的相对地址都是不变的

三、PLT 和 GOT,动态链接的解决方案

要实现动态链接共享库,也并不困难,和前面的静态链接里的符号表和重定向表类似,还是和前面一样,我们还是拿出一小段代码来看一看。

首先,lib.h 定义了动态链接库的一个函数 show_me_the_money。

// lib.h
#ifndef LIB_H
#define LIB_H

void show_me_the_money(int money);

#endif

lib.c 包含了 lib.h 的实际实现。

// lib.c
#include <stdio.h>


void show_me_the_money(int money)
{
    printf("Show me USD %d from lib.c \n", money);
}

然后,show_me_poor.c 调用了 lib 里面的函数。

// show_me_poor.c
#include "lib.h"
int main()
{
    int money = 5;
    show_me_the_money(money);
}

最后,我们把 lib.c 编译成了一个动态链接库,也就是 .so 文件。

$ gcc lib.c -fPIC -shared -o lib.so
$ gcc -o show_me_poor show_me_poor.c ./lib.so

你可以看到,在编译的过程中,我们指定了一个-fPIC的参数。这个参数其实就是 Position Independent Code 的意思,也就是我们要把这个编译成一个地址无关代码

然后,我们再通过 gcc 编译 show_me_poor 动态链接了 lib.so 的可执行文件。在这些操作都完成了之后,我们把 show_me_poor 这个文件通过 objdump 出来看一下。

$ objdump -d -M intel -S show_me_poor
……
0000000000400540 <show_me_the_money@plt-0x10>:
  400540:       ff 35 12 05 20 00       push   QWORD PTR [rip+0x200512]        # 600a58 <_GLOBAL_OFFSET_TABLE_+0x8>
  400546:       ff 25 14 05 20 00       jmp    QWORD PTR [rip+0x200514]        # 600a60 <_GLOBAL_OFFSET_TABLE_+0x10>
  40054c:       0f 1f 40 00             nop    DWORD PTR [rax+0x0]

0000000000400550 <show_me_the_money@plt>:
  400550:       ff 25 12 05 20 00       jmp    QWORD PTR [rip+0x200512]        # 600a68 <_GLOBAL_OFFSET_TABLE_+0x18>
  400556:       68 00 00 00 00          push   0x0
  40055b:       e9 e0 ff ff ff          jmp    400540 <_init+0x28>
……
0000000000400676 <main>:
  400676:       55                      push   rbp
  400677:       48 89 e5                mov    rbp,rsp
  40067a:       48 83 ec 10             sub    rsp,0x10
  40067e:       c7 45 fc 05 00 00 00    mov    DWORD PTR [rbp-0x4],0x5
  400685:       8b 45 fc                mov    eax,DWORD PTR [rbp-0x4]
  400688:       89 c7                   mov    edi,eax
  40068a:       e8 c1 fe ff ff          call   400550 <show_me_the_money@plt>
  40068f:       c9                      leave  
  400690:       c3                      ret    
  400691:       66 2e 0f 1f 84 00 00    nop    WORD PTR cs:[rax+rax*1+0x0]
  400698:       00 00 00 
  40069b:       0f 1f 44 00 00          nop    DWORD PTR [rax+rax*1+0x0]
……

我们还是只关心整个可执行文件中的一小部分内容。你应该可以看到,在 main 函数调用 show_me_the_money 的函数的时候,对应的代码是这样的:

call   400550 <show_me_the_money@plt>

这里后面有一个 @plt 的关键字,代表了我们需要从 PLT,也就是程序链接表(Procedure Link Table)里面找要调用的函数。对应的地址呢,则是 400550 这个地址。

那当我们把目光挪到上面的 400550 这个地址,你又会看到里面进行了一次跳转,这个跳转指定的跳转地址,你可以在后面的注释里面可以看到,GLOBAL_OFFSET_TABLE+0x18。这里的 GLOBAL_OFFSET_TABLE,就是我接下来要说的全局偏移表

  400550:       ff 25 12 05 20 00       jmp    QWORD PTR [rip+0x200512]        # 600a68 <_GLOBAL_OFFSET_TABLE_+0x18>

在动态链接对应的共享库,我们在共享库的 data section 里面,保存了一张全局偏移表(GOT,Global Offset Table)。【以下三句话重点理解!】

  • 虽然共享库的代码部分的物理内存是共享的,但是数据部分是各个动态链接它的应用程序里面各加载一份的【重要!】
  • 所有需要引用当前共享库外部的地址的指令,都会查询 GOT,来找到当前运行程序的虚拟内存里的对应位置【重要!】。
  • GOT 表里的数据,则是在我们加载一个个共享库的时候写进去的【重要!】。

不同的进程,调用同样的 lib.so,各自 GOT 里面指向最终加载的动态链接库里面的虚拟内存地址是不同的。【即动态链接库中相同的函数,不同的程序指向的虚拟内存地址是不同的】

这样,虽然不同的程序调用的同样的动态库,各自的内存地址是独立的,调用的又都是同一个动态库,但是不需要去修改动态库里面的代码所使用的地址,而是各个程序各自维护好自己的 GOT,能够找到对应的动态库就好了

在这里插入图片描述

四、总结延伸

这一讲,我们终于在静态链接程序装载之后,利用动态链接把我们的内存利用到了极致。同样功能的代码生成的共享库,我们只要在内存里面保留一份就好了。这样,我们不仅能够做到代码在开发阶段的复用【静态链接】,也能做到代码在运行阶段的复用【动态链接】

五、问答精选

1、
:老师,为什么要采用 PLT 和 GOT 两级跳转,直接用 GOT 有问题吗?
:PLT是为了做延迟绑定,如果函数没有实际被调用到,就不需要更新GOT里面的数值。因为很多动态装载的函数库都是不会被实际调用到的。这个如果要深入细节可以看一下《程序员的自我修养》的7.4小结。

2、
问:所以说plt 里面实际上是存放了 GOT[ i ] 的地址 , 而 GOT[ i ] 中存放了 要调用函数在虚拟内存中的地址,而该地址实际上是共享函数代码段的真实物理地址的一个映射【理解的不错!】。但有一些疑问,PLT 的 机制是什么,感觉没太介绍PLT ,不知道他怎么来的。对PLT 很模糊,他如何利用了相对地址的方法。希望老师能解答一下
答:plt是为了延迟绑定;PLT是一个跳转表

总结【个人总结的重点】

  • 每个程序自己维护一张GOT表
  • 使用动态链接的原因:相同的代码,极端情况下,会占用太多的内存。【解决内存不够用的问题,节省内存】
  • 动态链接和静态链接?
    • 动态链接:多个程序间共用的程序在物理内存中只加载一次,在程序运行时链接。
    • 静态链接:多个目标文件链接合并成可执行文件,在程序运行前链接。
  • PLT 和 GOT 两级跳转【动态链接的解决方案】
    • PLT程序链接表(Procedure Link Table):用来查找GOT表的地址【PLT是为了延迟绑定;PLT是一个跳转表】
    • GOT全局偏移表(GOT,Global Offset Table):用来查找函数的虚拟内存地址【每个程序维护一张GOT表】

【计算机组成原理】学习笔记——总目录