zl程序教程

您现在的位置是:首页 >  其它

当前栏目

高压小功率三极管 MFV13001

功率 三极管
2023-09-11 14:15:22 时间

 

01基本参数


小功率高速高压开关三极管 MJE13001 ,典型应用:

  • 荧光灯电子镇流器
  • 手机充电器等开关特点。

主要的参数:

  • 通过万用表验证上面TO-92封装的形式。B对于C,E的二极管的导通电压:0.662V 。

下面是从 小功率荧光灯拆解分析 中拆卸下来的两支 13002晶体管。

▲ 在小型荧光灯泡里拆卸下来的13002

▲ 在小型荧光灯泡里拆卸下来的13002

▲ 测量三极管的基本参数

▲ 测量三极管的基本参数

 

02测量基本耐压参数


▲ 测量MJE13001的基本击穿电压

▲ 测量MJE13001的基本击穿电压

使用 高压产生平台 测量MJE13001的基本耐压参数。

1.Vcbo

▲ Vcbo电压击穿电流

▲ Vcbo电压击穿电流

vin=[440.62,447.58,454.47,461.54,468.36,475.95,482.88,489.88,496.73,503.78,510.64,517.51,524.53,532.08,538.99,545.90,552.88,559.70,566.72,573.61,580.44,587.92,594.99,601.91,608.79,615.81,622.68,629.63,636.53,643.99,650.86,657.83,664.64,671.68,678.51,685.34,692.24,699.23,706.73,713.58,720.58,727.48,734.46,741.22,745.76,748.19,750.69,753.13,755.25,757.27,759.34,761.35,763.29,765.31,767.42,769.41,771.27,773.04,774.79,776.62,778.03,779.59,781.11,782.43,783.78]
iout=[0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.01,0.27,6.15,18.00,31.38,42.91,55.53,68.74,81.69,95.04,108.20,121.18,135.64,148.37,160.46,172.07,183.83,195.26,206.65,217.86,230.06,241.57,252.75]

2.Vceo

▲ Vceo电压与电流

▲ Vceo电压与电流

vin=[439.87,446.84,453.72,460.80,467.69,475.31,482.13,489.20,496.06,503.05,509.97,516.79,523.81,531.30,538.18,545.08,522.64,522.57,522.62,522.71,522.87,523.15,523.36,523.73,524.05,524.26,524.72,525.07,525.44]
iout=[0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,-0.00,0.01,0.00,76.46,94.61,113.05,130.94,148.31,165.74,180.65,194.24,207.45,220.37,232.67,245.14,257.21]

3.Vceb=0

▲ 将eb短接测量Vce与Ice之间的关系

▲ 将eb短接测量Vce与Ice之间的关系

对照一下,可以看到基本上Vceb=0与Vcbo基本是一样的。

4.测量SOT-23封装的参数

▲ 测量SOT-23封装的耐压参数

▲ 测量SOT-23封装的耐压参数

(1) Vcbo

需要说明的是,在开始的电流突升是由于使用洗板水进行清理的过程中,挥发过程,各个电极之间的阻抗在动态变化。

▲ Vcbo电压与电流曲线

▲ Vcbo电压与电流曲线

(2) Vceo

▲ Vceo电压与电流

▲ Vceo电压与电流

(3) Vceb=0

▲ Vceb=0电压电流

▲ Vceb=0电压电流

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST2.PY                     -- by Dr. ZhuoQing 2020-09-19
#
# Note:
#============================================================

from headm import *
from tsmodule.tsvisa        import *
from tsmodule.tsstm32       import *

dp1308open()
dm3068open()

setv = linspace(0.8, 2, 100)

idim = []
vdim = []

for v in setv:
    dp1308p6v(v)
    time.sleep(0.5)

    meter = meterval()
    vout = dm3068vdc()

    printff(v, meter[0]*988, vout*1000)
    idim.append(vout*1000)
    vdim.append(meter[0]*988)

    tspsave("measure", vin=vdim, iout=idim)

    if vout*1000 > 250: break

dp1308p6v(0)

plt.plot(vdim, idim)
plt.xlabel("输入电压(V)")
plt.ylabel("电流(uA)")
plt.grid(True)
plt.tight_layout()
plt.show()

#------------------------------------------------------------
#        END OF FILE : TEST2.PY
#============================================================

5.分析

对比前面对于SOT23封装和TO-92封装的数据,可以看到SOT23封装的耐压会更高一些。

 

03电流放大倍数


测量电路如下图所示。通过调节电位器P1器使得Uce达到2.5V左右。通过测量Ubr, Uce来计算三极管的电流放大倍数。

▲ 测试电路

▲ 测试电路

β = I c I b = + 5 − U c e R c U b r R b = R b R c × 5 − U c e U b r \beta = {{I_c } \over {I_b }} = {{{{ + 5 - U_{ce} } \over {R_c }}} \over {{{U_{br} } \over {R_b }}}} = {{R_b } \over {R_c }} \times {{5 - U_{ce} } \over {U_{br} }} β=IbIc=RbUbrRc+5Uce=RcRb×Ubr5Uce

  • 测量TO-92封装组数据为:
UbrUcebeta
0.6182.31219.54
0.3813.35423.23
1.0050.75119.025
  • 测量SOT-23封装13001数据
UbrUcebeta
0.63992.485117.73

从上面测量的结果来看,13001 的电流放大倍数非常低。作为对比。使用一颗8050 NPN三极管替代13001,来测量对应的电流放大倍数。具体数据如下:

UbrUcebeta
0.7032.586154.5

将8050的C,E进行交换,测量得到的数值:

UbrUcebeta
0.61782.71016.68

 

※ 结论


通过实际测量MJE13001高压高频开关三极管的基本参数,可以验证它具有以下特点:

  • 它的耐压很高,Vcbo达到了700V以上;
  • 它的电流放大倍数比较低:基本上在20左右。

 
■ 相关文献链接: