zl程序教程

您现在的位置是:首页 >  系统

当前栏目

2021年春季学期-信号与系统-第七次作业参考答案-第四小题

系统 2021 信号 作业 春季 参考答案 学期 第四
2023-09-11 14:15:20 时间


本文是 2021年春季学期-信号与系统-第七次作业参考答案 的小题的参考答案。

 

▌第四小题 ▌


4. Consider the signal x ( t ) x\left( t \right) x(t) in the following figure:

(a)Find the fourier transform X ( j ω ) X\left( {j\omega } \right) X(jω) of x ( t ) x\left( t \right) x(t)
(b) Sketch the signal:

x ~ ( t ) = x ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = x\left( t \right) * \sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=x(t)k=δ(t4k)(c) Find another signal g ( t ) g\left( t \right) g(t) such that g ( t ) g\left( t \right) g(t) is not the same as x ( t ) x\left( t \right) x(t) and

x ~ ( t ) = g ( t ) K ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = g\left( t \right)K*\sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=g(t)Kk=δ(t4k)(d) Argue that, alghough G ( j ω ) G\left( {j\omega } \right) G(jω) is different from X ( j ω ) X\left( {j\omega } \right) X(jω)
G ( j π k 2 ) = X ( j π k 2 ) G\left( {j{{\pi k} \over 2}} \right) = X\left( {j{{\pi k} \over 2}} \right) G(j2πk)=X(j2πk)for all intergers k k k, you should not explicitly avaluate G ( j ω ) G\left( {j\omega } \right) G(jω) to answer this question.

还是忍不住多说两句:
(a)参考第4小题中的内容;
(b)这分明就是将x(t)进行周期为4的周期化;
(c)忍住了,就是不提示;
(d)对照X(jω),G(jω)离散化后的表达式,
它们相等,就会得到结论了。

▓ 本题为思考题

▓ 求解:

(a) x(t)是一个偶对称等腰三角形波形,它的 底宽为2,高为1,对应的傅里叶变换为:
X ( ω ) = S a 2 ( ω 2 ) X\left( \omega \right) = Sa^2 \left( {{\omega \over 2}} \right) X(ω)=Sa2(2ω)

(b) 是对x(t)进行周期为4的周期延拓,形 成如下图所示的周期波形:

(c) 对于任何一个函数 h ( t ) h\left( t \right) h(t) ,它与它自身延迟4相减得到:

h 4 ( t ) = h ( t ) − h ( t − 4 ) h_4 \left( t \right) = h\left( t \right) - h\left( {t - 4} \right) h4(t)=h(t)h(t4)

再进行周期延拓,结果为零:

∑ k = − ∞ + ∞ h 4 ( t − 4 k ) − h 4 ( t − 4 − 4 k ) \sum\limits_{k = - \infty }^{ + \infty } {h_4 \left( {t - 4k} \right) - h_4 \left( {t - 4 - 4k} \right)} k=+h4(t4k)h4(t44k) = ∑ k = − ∞ ∞ h 4 ( t − 4 k ) − ∑ k = − ∞ ∞ h 4 ( t − 4 − 4 k ) = 0 = \sum\limits_{k = - \infty }^\infty {h_4 \left( {t - 4k} \right)} - \sum\limits_{k = - \infty }^\infty {h_4 \left( {t - 4 - 4k} \right)} = 0 =k=h4(t4k)k=h4(t44k)=0

因此任意取h(t)不为零,按照下面方式形成g(t):

g ( t ) = x ( t ) + h ( t ) − h ( t − 4 ) g\left( t \right) = x\left( t \right) + h\left( t \right) - h\left( {t - 4} \right) g(t)=x(t)+h(t)h(t4)

∑ k = − ∞ ∞ g ( t − 4 k ) = ∑ k = − ∞ ∞ x ( t − 4 k ) \sum\limits_{k = - \infty }^\infty {g\left( {t - 4k} \right)} = \sum\limits_{k = - \infty }^\infty {x\left( {t - 4k} \right)} k=g(t4k)=k=x(t4k)

x ~ ( t ) = g ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = g\left( t \right) * \sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=g(t)k=δ(t4k)

举出一个例子:

(d)由于:
x ~ ( t ) = x ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = x\left( t \right)*\sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=x(t)k=δ(t4k)

x ~ ( t ) = g ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = g\left( t \right)*\sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=g(t)k=δ(t4k)

假设 x ~ ( t ) , x ( t ) , g ( t ) \tilde x\left( t \right),x\left( t \right),g\left( t \right) x~(t),x(t),g(t)各自的傅里叶变换为:


X ~ ( ω ) \tilde X\left( \omega \right) X~(ω)是对 G ( ω ) G\left( \omega \right) G(ω) X ( ω ) X\left( \omega \right) X(ω)分别进行间隔为:
ω 1 = 2 π 4 = π 2 \omega _1 = {{2\pi } \over 4} = {\pi \over 2} ω1=42π=2π

的离散化,即:
X ~ ( ω ) = π 2 ⋅ ∑ n = − ∞ ∞ X ( π n 2 ) ⋅ δ ( ω − π n 2 ) \tilde X\left( \omega \right) = {\pi \over 2} \cdot \sum\limits_{n = - \infty }^\infty {X\left( {{{\pi n} \over 2}} \right) \cdot \delta \left( {\omega - {{\pi n} \over 2}} \right)} X~(ω)=2πn=X(2πn)δ(ω2πn) = π 2 ⋅ ∑ n = − ∞ ∞ G ( π n 2 ) ⋅ δ ( ω − π n 2 ) = {\pi \over 2} \cdot \sum\limits_{n = - \infty }^\infty {G\left( {{{\pi n} \over 2}} \right) \cdot \delta \left( {\omega - {{\pi n} \over 2}} \right)} =2πn=G(2πn)δ(ω2πn)

根据上面方程,左右两边奇异函数系数匹配方法,可知: G ( j π k 2 ) = X ( j π k 2 ) G\left( {j{{\pi k} \over 2}} \right) = X\left( {j{{\pi k} \over 2}} \right) G(j2πk)=X(j2πk)

另外,也可以从g(t)的构造方式进行证明。

如果按照前面构造的过程,取任意函数 h ( t ) h\left( t \right) h(t) g ( t ) = x ( t ) + h ( t + 2 ) − h ( t − 2 ) g\left( t \right) = x\left( t \right) + h\left( {t + 2} \right) - h\left( {t - 2} \right) g(t)=x(t)+h(t+2)h(t2)

满足条件(c)的假设,而:

令:


由于:

F T [ h ( t + 2 ) − h ( t − 2 ) ] FT\left[ {h\left( {t + 2} \right) - h\left( {t - 2} \right)} \right] FT[h(t+2)h(t2)] = H ( ω ) ( e j 2 ω − e − j 2 ω ) = H\left( \omega \right)\left( {e^{j2\omega } - e^{ - j2\omega } } \right) =H(ω)(ej2ωej2ω) = H ( ω ) [ 2 j ⋅ sin ⁡ 2 ω ] = H\left( \omega \right)\left[ {2j \cdot \sin 2\omega } \right] =H(ω)[2jsin2ω]

所以:

H 4 ( π k 2 ) = H ( π k 2 ) ⋅ 2 j ⋅ sin ⁡ ( 2 ⋅ π k 2 ) = 0 H_4 \left( {{{\pi k} \over 2}} \right) = H\left( {{{\pi k} \over 2}} \right) \cdot 2j \cdot \sin \left( {2 \cdot {{\pi k} \over 2}} \right) = 0 H4(2πk)=H(2πk)2jsin(22πk)=0

因此:
G ( π k 2 ) = X ( π k 2 ) + H 4 ( π k 2 ) = X ( π k 2 ) G\left( {{{\pi k} \over 2}} \right) = X\left( {{{\pi k} \over 2}} \right) + H_4 \left( {{{\pi k} \over 2}} \right) = X\left( {{{\pi k} \over 2}} \right) G(2πk)=X(2πk)+H4(2πk)=X(2πk)

 

【其它各小题参考答案】