zl程序教程

您现在的位置是:首页 >  其它

当前栏目

高等数学(第七版)同济大学 习题9-4 (后2题)个人解答

个人 习题 解答 高等数学 同济大学 第七版
2023-09-14 09:06:58 时间

高等数学(第七版)同济大学 习题9-4(后2题)

 

12.  求下列函数的 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y 2 (其中 f 具有二阶连续偏导数): \begin{aligned}&12. \ 求下列函数的\frac{\partial^2 z}{\partial x^2},\frac{\partial^2 z}{\partial x \partial y},\frac{\partial^2 z}{\partial y^2}(其中f具有二阶连续偏导数):&\end{aligned} 12. 求下列函数的x22zxy2zy22z(其中f具有二阶连续偏导数):

   ( 1 )    z = f ( x y ,   y ) ;                            ( 2 )    z = f ( x ,   x y ) ;    ( 3 )    z = f ( x y 2 ,   x 2 y ) ;                       ( 4 )    z = f ( s i n   x ,   c o s   y ,   e x + y ) . \begin{aligned} &\ \ (1)\ \ z=f(xy, \ y);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ z=f\left(x, \ \frac{x}{y}\right);\\\\ &\ \ (3)\ \ z=f(xy^2, \ x^2y);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ z=f(sin\ x, \ cos\ y, \ e^{x+y}). & \end{aligned}   (1)  z=f(xy, y)                           (2)  z=f(x, yx)  (3)  z=f(xy2, x2y)                      (4)  z=f(sin x, cos y, ex+y).

解:

   ( 1 )  令 s = x y , t = y ,则 z = f ( s ,   t ) , s 和 t 为中间变量,将 s , t 编号 1 , 2 ,则 ∂ z ∂ x = f 1 ′ ⋅ ∂ s ∂ x = y f 1 ′ ,          ∂ z ∂ y = f 1 ′ ⋅ ∂ s ∂ y + f 2 ′ ⋅ d t d y = x f 1 ′ + f 2 ′ ,因为 f ( s ,   t ) 是 s 和 t 的函数,所以 f 1 ′ 和 f 2 ′ 也是 s 和 t 的函数, f 1 ′ 和 f 2 ′ 是以 s 和 t         为中间变量的 x 和 y 的函数,所以 ∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = ∂ ∂ x ( y f 1 ′ ) = y f 11 ′ ′ ⋅ ∂ s ∂ x = y 2 f 11 ′ ′ ,          ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = ∂ ∂ y ( y f 1 ′ ) = f 1 ′ + y ( f 11 ′ ′ ⋅ ∂ s ∂ y + f 12 ′ ′ ⋅ d t d y ) = f 1 ′ + x y f 11 ′ ′ + y f 12 ′ ′ ,          ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = ∂ ∂ y ( x f 1 ′ + f 2 ′ ) = x ( f 11 ′ ′ ∂ s ∂ y + f 12 ′ ′ d t d y ) + f 21 ′ ′ ∂ s ∂ y + f 22 ′ ′ d t d y = x 2 f 11 ′ ′ + 2 x f 12 ′ ′ + f 22 ′ ′ .    ( 2 )  令 s = x , t = x y ,将 s 和 t 编号 1 , 2 ,则 ∂ z ∂ x = f 1 ′ d s d x + f 2 ′ ∂ t ∂ x = f 1 ′ + 1 y f 2 ′ , ∂ z ∂ y = f 2 ′ ∂ t ∂ y = − x y 2 f 2 ′ ,         因为 f ( s ,   t ) 是 s 和 t 的函数,所以 f 1 ′ 和 f 2 ′ 也是 s 和 t 的函数, f 1 ′ 和 f 2 ′ 是以 s 和 t 为中间变量的 x 和 y 的函数,所以          ∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = ∂ ∂ x ( f 1 ′ + 1 y f 2 ′ ) = f 11 ′ ′ + f 12 ′ ′ ⋅ ∂ t ∂ x + 1 y ( f 21 ′ ′ + f 22 ′ ′ ⋅ ∂ t ∂ x ) = f 11 ′ ′ + 2 y f 12 ′ ′ + 1 y 2 f 22 ′ ′ ,          ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = ∂ ∂ y ( f 1 ′ + 1 y f 2 ′ ) = f 12 ′ ′ ⋅ ∂ t ∂ y − 1 y 2 f 2 ′ + 1 y f 22 ′ ′ ∂ t ∂ y = − x y 2 f 12 ′ ′ − 1 y 2 f 2 ′ − x y 3 f 22 ′ ′ ,          ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = ∂ ∂ y ( − x y 2 f 2 ′ ) = 2 x y 3 f 2 ′ − x y 2 f 22 ′ ′ ∂ t ∂ v = 2 x y 3 f 2 ′ + x 2 y 4 f 22 ′ ′ .    ( 3 )  令 s = x y 2 , t = x 2 y ,将 s , t 编号为 1 , 2 ,则 ∂ z ∂ x = f 1 ′ ∂ s ∂ x + f 2 ′ ∂ t ∂ x = y 2 f 1 ′ + 2 x y f 2 ′ ,          ∂ z ∂ y = f 1 ′ ∂ s ∂ y + f 2 ′ ∂ t ∂ y = 2 x y f 1 ′ + x 2 f 2 ′ ,          ∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = ∂ ∂ x ( y 2 f 1 ′ + 2 x y f 2 ′ ) = y 2 ( f 11 ′ ′ ⋅ ∂ s ∂ x + f 12 ′ ′ ⋅ ∂ t ∂ x ) + 2 y f 2 ′ + 2 x y ( f 21 ′ ′ ∂ s ∂ x + f 22 ′ ′ ∂ t ∂ x ) =          y 2 ( y 2 f 11 ′ ′ + 2 x y f 12 ′ ′ ) + 2 y f 2 ′ + 2 x y ( y 2 f 21 ′ ′ + 2 x y f 22 ′ ′ ) = 2 y f 2 ′ + y 4 f 11 ′ ′ + 4 x y 3 f 12 ′ ′ + 4 x 2 y 2 f 22 ′ ′ ,           ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = ∂ ∂ y ( y 2 f 1 ′ + 2 x y f 2 ′ ) = 2 y f 1 ′ + y 2 ( f 11 ′ ′ ⋅ ∂ s ∂ y + f 12 ′ ′ ⋅ ∂ t ∂ y ) + 2 x f 2 ′ + 2 x y ( f 21 ′ ′ ∂ s ∂ y + f 22 ′ ′ ∂ t ∂ y ) =          2 y f 1 ′ + y 2 ( 2 x y f 11 ′ ′ + x 2 f 12 ′ ′ ) + 2 x f 2 ′ + 2 x y ( 2 x y f 21 ′ ′ + x 2 f 22 ′ ′ ) = 2 y f 1 ′ + 2 x f 2 ′ + 2 x y 3 f 11 ′ ′ + 5 x 2 y 2 f 12 ′ ′ + 2 x 3 y f 22 ′ ′ ,          ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = ∂ ∂ y ( 2 x y f 1 ′ + x 2 f 2 ′ ) = 2 x f 1 ′ + 2 x y ( f 11 ′ ′ ∂ s ∂ y + f 12 ′ ′ ∂ t ∂ y ) + x 2 ( f 21 ′ ′ ∂ s ∂ y + f 22 ′ ′ ∂ t ∂ y ) =          2 x f 1 ′ + 2 x y ( 2 x y f 11 ′ ′ + x 2 f 12 ′ ′ ) + x 2 ( 2 x y f 21 ′ ′ + x 2 f 22 ′ ′ ) = 2 x f 1 ′ + 4 x 2 y 2 f 11 ′ ′ + 4 x 3 y f 12 ′ ′ + x 4 f 22 ′ ′ .    ( 4 )  令 u = s i n   x , v = c o s   y , w = e x + y ,将 u , v , w 编号为 1 , 2 , 3 ,则          ∂ z ∂ x = f 1 ′ d u d x + f 3 ′ ∂ w ∂ x = c o s   x f 1 ′ + e x + y f 3 ′ ,          ∂ z ∂ y = f 2 ′ d v d y + f 3 ′ ∂ w ∂ y = − s i n   y f 2 ′ + e x + y f 3 ′ ,          ∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = ∂ ∂ x ( c o s   x f 1 ′ + e x + y f 3 ′ ) =          − s i n   x f 1 ′ + c o s   x ( f 11 ′ ′ d u d x + f 13 ′ ′ ∂ w ∂ x ) + e x + y f 3 ′ + e x + y ( f 31 ′ ′ d u d x + f 33 ′ ′ ∂ w ∂ x ) =          − s i n   x f 1 ′ + c o s   x ( c o s   x f 11 ′ ′ + e x + y f 13 ′ ′ ) + e x + y f 3 ′ + e x + y ( c o s   x f 31 ′ ′ + e x + y f 33 ′ ′ ) =          e x + y f 3 ′ − s i n   x f 1 ′ + c o s 2 x f 11 ′ ′ + 2 e x + y c o s   x f 13 ′ ′ + e 2 ( x + y ) f 33 ′ ′ ,          ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = ∂ ∂ y ( c o s   x f 1 ′ + e x + y f 3 ′ ) = c o s   x ( f 12 ′ ′ d v d y + f 13 ′ ′ ∂ w ∂ y ) + e x + y f 3 ′ + e x + y ( f 32 ′ ′ d v d y + f 33 ′ ′ ∂ w ∂ y ) =          c o s   x ( − s i n   y f 12 ′ ′ + e x + y f 13 ′ ′ ) + e x + y f 3 ′ + e x + y ( − s i n   y f 32 ′ ′ + e x + y f 33 ′ ′ ) =          e x + y f 3 ′ − c o s   x s i n   y f 12 ′ ′ + e x + y c o s   x f 13 ′ ′ − e x + y s i n   y f 32 ′ ′ + e 2 ( x + y ) f 33 ′ ′ ,          ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = ∂ ∂ y ( − s i n   y f 2 ′ + e x + y f 3 ′ ) =          − c o s   y f 2 ′ − s i n   y ( f 22 ′ ′ d v d y + f 23 ′ ′ ∂ w ∂ y ) + e x + y f 3 ′ + e x + y ( f 32 ′ ′ d v d y + f 33 ′ ′ ∂ w ∂ y ) =          − c o s   y f 2 ′ − s i n   y ( − s i n   y f 22 ′ ′ + e x + y f 23 ′ ′ ) + e x + y f 3 ′ + e x + y ( − s i n   y f 32 ′ ′ + e x + y f 33 ′ ′ ) =          e x + y f 3 ′ − c o s   y f 2 ′ + s i n 2 y f 22 ′ ′ − 2 e x + y s i n   y f 23 ′ ′ + e 2 ( x + y ) f 33 ′ ′ . \begin{aligned} &\ \ (1)\ 令s=xy,t=y,则z=f(s, \ t),s和t为中间变量,将s,t编号1,2,则\frac{\partial z}{\partial x}=f'_1\cdot \frac{\partial s}{\partial x}=yf'_1,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial z}{\partial y}=f'_1\cdot \frac{\partial s}{\partial y}+f'_2\cdot \frac{dt}{dy}=xf'_1+f'_2,因为f(s, \ t)是s和t的函数,所以f'_1和f'_2也是s和t的函数,f'_1和f'_2是以s和t\\\\ &\ \ \ \ \ \ \ \ 为中间变量的x和y的函数,所以\frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial x}(yf'_1)=yf''_{11}\cdot \frac{\partial s}{\partial x}=y^2f''_{11},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial y}(yf'_1)=f'_1+y\left(f''_{11}\cdot \frac{\partial s}{\partial y}+f''_{12}\cdot \frac{dt}{dy}\right)=f'_1+xyf''_{11}+yf''_{12},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial}{\partial y}(xf'_1+f'_2)=x\left(f''_{11}\frac{\partial s}{\partial y}+f''_{12}\frac{dt}{dy}\right)+f''_{21}\frac{\partial s}{\partial y}+f''_{22}\frac{dt}{dy}=x^2f''_{11}+2xf''_{12}+f''_{22}.\\\\ &\ \ (2)\ 令s=x,t=\frac{x}{y},将s和t编号1,2,则\frac{\partial z}{\partial x}=f'_1\frac{ds}{dx}+f'_2\frac{\partial t}{\partial x}=f'_1+\frac{1}{y}f'_2,\frac{\partial z}{\partial y}=f'_2\frac{\partial t}{\partial y}=-\frac{x}{y^2}f'_2,\\\\ &\ \ \ \ \ \ \ \ 因为f(s, \ t)是s和t的函数,所以f'_1和f'_2也是s和t 的函数,f'_1和f'_2是以s和t为中间变量的x和y的函数,所以\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial x}\left(f'_1+\frac{1}{y}f'_2\right)=f''_{11}+f''_{12}\cdot \frac{\partial t}{\partial x}+\frac{1}{y}\left(f''_{21}+f''_{22}\cdot \frac{\partial t}{\partial x}\right)=f''_{11}+\frac{2}{y}f''_{12}+\frac{1}{y^2}f''_{22},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial y}\left(f'_1+\frac{1}{y}f'_2\right)=f''_{12}\cdot \frac{\partial t}{\partial y}-\frac{1}{y^2}f'_2+\frac{1}{y}f''_{22}\frac{\partial t}{\partial y}=-\frac{x}{y^2}f''_{12}-\frac{1}{y^2}f'_2-\frac{x}{y^3}f''_{22},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial}{\partial y}\left(-\frac{x}{y^2}f'_2\right)=\frac{2x}{y^3}f'_2-\frac{x}{y^2}f''_{22}\frac{\partial t}{\partial v}=\frac{2x}{y^3}f'_2+\frac{x^2}{y^4}f''_{22}.\\\\ &\ \ (3)\ 令s=xy^2,t=x^2y,将s,t编号为1,2,则\frac{\partial z}{\partial x}=f'_1\frac{\partial s}{\partial x}+f'_2\frac{\partial t}{\partial x}=y^2f'_1+2xyf'_2,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial z}{\partial y}=f'_1\frac{\partial s}{\partial y}+f'_2\frac{\partial t}{\partial y}=2xyf'_1+x^2f'_2,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial x}(y^2f'_1+2xyf'_2)=y^2\left(f''_{11}\cdot \frac{\partial s}{\partial x}+f''_{12}\cdot \frac{\partial t}{\partial x}\right)+2yf'_2+2xy\left(f''_{21}\frac{\partial s}{\partial x}+f''_{22}\frac{\partial t}{\partial x}\right)=\\\\ &\ \ \ \ \ \ \ \ y^2(y^2f''_{11}+2xyf''_{12})+2yf'_2+2xy(y^2f''_{21}+2xyf''_{22})=2yf'_2+y^4f''_{11}+4xy^3f''_{12}+4x^2y^2f''_{22},\\\\ &\ \ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial y}(y^2f'_1+2xyf'_2)=2yf'_1+y^2\left(f''_{11}\cdot \frac{\partial s}{\partial y}+f''_{12}\cdot \frac{\partial t}{\partial y}\right)+2xf'_2+2xy\left(f''_{21}\frac{\partial s}{\partial y}+f''_{22}\frac{\partial t}{\partial y}\right)=\\\\ &\ \ \ \ \ \ \ \ 2yf'_1+y^2(2xyf''_{11}+x^2f''_{12})+2xf'_2+2xy(2xyf''_{21}+x^2f''_{22})=2yf'_1+2xf'_2+2xy^3f''_{11}+5x^2y^2f''_{12}+2x^3yf''_{22},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial}{\partial y}(2xyf'_1+x^2f'_2)=2xf'_1+2xy\left(f''_{11}\frac{\partial s}{\partial y}+f''_{12}\frac{\partial t}{\partial y}\right)+x^2\left(f''_{21}\frac{\partial s}{\partial y}+f''_{22}\frac{\partial t}{\partial y}\right)=\\\\ &\ \ \ \ \ \ \ \ 2xf'_1+2xy(2xyf''_{11}+x^2f''_{12})+x^2(2xyf''_{21}+x^2f''_{22})=2xf'_1+4x^2y^2f''_{11}+4x^3yf''_{12}+x^4f''_{22}.\\\\ &\ \ (4)\ 令u=sin\ x,v=cos\ y,w=e^{x+y},将u,v,w编号为1,2,3,则\\\\ &\ \ \ \ \ \ \ \ \frac{\partial z}{\partial x}=f'_1\frac{du}{dx}+f'_3\frac{\partial w}{\partial x}=cos\ xf'_1+e^{x+y}f'_3,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial z}{\partial y}=f'_2\frac{dv}{dy}+f'_3\frac{\partial w}{\partial y}=-sin\ yf'_2+e^{x+y}f'_3,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial x}(cos\ xf'_1+e^{x+y}f'_3)=\\\\ &\ \ \ \ \ \ \ \ -sin\ xf'_1+cos\ x\left(f''_{11}\frac{du}{dx}+f''_{13}\frac{\partial w}{\partial x}\right)+e^{x+y}f'_3+e^{x+y}\left(f''_{31}\frac{du}{dx}+f''_{33}\frac{\partial w}{\partial x}\right)=\\\\ &\ \ \ \ \ \ \ \ -sin\ xf'_1+cos\ x(cos\ xf''_{11}+e^{x+y}f''_{13})+e^{x+y}f'_3+e^{x+y}(cos\ xf''_{31}+e^{x+y}f''_{33})=\\\\ &\ \ \ \ \ \ \ \ e^{x+y}f'_3-sin\ xf'_1+cos^2 xf''_{11}+2e^{x+y}cos\ xf''_{13}+e^{2(x+y)}f''_{33},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial y}(cos\ xf'_1+e^{x+y}f'_3)=cos\ x\left(f''_{12}\frac{dv}{dy}+f''_{13}\frac{\partial w}{\partial y}\right)+e^{x+y}f'_3+e^{x+y}\left(f''_{32}\frac{dv}{dy}+f''_{33}\frac{\partial w}{\partial y}\right)=\\\\ &\ \ \ \ \ \ \ \ cos\ x(-sin\ yf''_{12}+e^{x+y}f''_{13})+e^{x+y}f'_3+e^{x+y}(-sin\ yf''_{32}+e^{x+y}f''_{33})=\\\\ &\ \ \ \ \ \ \ \ e^{x+y}f'_3-cos\ xsin\ yf''_{12}+e^{x+y}cos\ xf''_{13}-e^{x+y}sin\ yf''_{32}+e^{2(x+y)}f''_{33},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial}{\partial y}(-sin\ yf'_2+e^{x+y}f'_3)=\\\\ &\ \ \ \ \ \ \ \ -cos\ yf'_2-sin\ y\left(f''_{22}\frac{dv}{dy}+f''_{23}\frac{\partial w}{\partial y}\right)+e^{x+y}f'_3+e^{x+y}\left(f''_{32}\frac{dv}{dy}+f''_{33}\frac{\partial w}{\partial y}\right)=\\\\ &\ \ \ \ \ \ \ \ -cos\ yf'_2-sin\ y(-sin\ yf''_{22}+e^{x+y}f''_{23})+e^{x+y}f'_3+e^{x+y}(-sin\ yf''_{32}+e^{x+y}f''_{33})=\\\\ &\ \ \ \ \ \ \ \ e^{x+y}f'_3-cos\ yf'_2+sin^2 yf''_{22}-2e^{x+y}sin\ yf''_{23}+e^{2(x+y)}f''_{33}. & \end{aligned}   (1) s=xyt=y,则z=f(s, t)st为中间变量,将st编号12,则xz=f1xs=yf1        yz=f1ys+f2dydt=xf1+f2,因为f(s, t)st的函数,所以f1f2也是st的函数,f1f2是以st        为中间变量的xy的函数,所以x22z=x(xz)=x(yf1)=yf11′′xs=y2f11′′        xy2z=y(xz)=y(yf1)=f1+y(f11′′ys+f12′′dydt)=f1+xyf11′′+yf12′′        y22z=y(yz)=y(xf1+f2)=x(f11′′ys+f12′′dydt)+f21′′ys+f22′′dydt=x2f11′′+2xf12′′+f22′′.  (2) s=xt=yx,将st编号12,则xz=f1dxds+f2xt=f1+y1f2yz=f2yt=y2xf2        因为f(s, t)st的函数,所以f1f2也是st的函数,f1f2是以st为中间变量的xy的函数,所以        x22z=x(xz)=x(f1+y1f2)=f11′′+f12′′xt+y1(f21′′+f22′′xt)=f11′′+y2f12′′+y21f22′′        xy2z=y(xz)=y(f1+y1f2)=f12′′yty21f2+y1f22′′yt=y2xf12′′y21f2y3xf22′′        y22z=y(yz)=y(y2xf2)=y32xf2y2xf22′′vt=y32xf2+y4x2f22′′.  (3) s=xy2t=x2y,将st编号为12,则xz=f1xs+f2xt=y2f1+2xyf2        yz=f1ys+f2yt=2xyf1+x2f2        x22z=x(xz)=x(y2f1+2xyf2)=y2(f11′′xs+f12′′xt)+2yf2+2xy(f21′′xs+f22′′xt)=        y2(y2f11′′+2xyf12′′)+2yf2+2xy(y2f21′′+2xyf22′′)=2yf2+y4f11′′+4xy3f12′′+4x2y2f22′′         xy2z=y(xz)=y(y2f1+2xyf2)=2yf1+y2(f11′′ys+f12′′yt)+2xf2+2xy(f21′′ys+f22′′yt)=        2yf1+y2(2xyf11′′+x2f12′′)+2xf2+2xy(2xyf21′′+x2f22′′)=2yf1+2xf2+2xy3f11′′+5x2y2f12′′+2x3yf22′′        y22z=y(yz)=y(2xyf1+x2f2)=2xf1+2xy(f11′′ys+f12′′yt)+x2(f21′′ys+f22′′yt)=        2xf1+2xy(2xyf11′′+x2f12′′)+x2(2xyf21′′+x2f22′′)=2xf1+4x2y2f11′′+4x3yf12′′+x4f22′′.  (4) u=sin xv=cos yw=ex+y,将uvw编号为123,则        xz=f1dxdu+f3xw=cos xf1+ex+yf3        yz=f2dydv+f3yw=sin yf2+ex+yf3        x22z=x(xz)=x(cos xf1+ex+yf3)=        sin xf1+cos x(f11′′dxdu+f13′′xw)+ex+yf3+ex+y(f31′′dxdu+f33′′xw)=        sin xf1+cos x(cos xf11′′+ex+yf13′′)+ex+yf3+ex+y(cos xf31′′+ex+yf33′′)=        ex+yf3sin xf1+cos2xf11′′+2ex+ycos xf13′′+e2(x+y)f33′′        xy2z=y(xz)=y(cos xf1+ex+yf3)=cos x(f12′′dydv+f13′′yw)+ex+yf3+ex+y(f32′′dydv+f33′′yw)=        cos x(sin yf12′′+ex+yf13′′)+ex+yf3+ex+y(sin yf32′′+ex+yf33′′)=        ex+yf3cos xsin yf12′′+ex+ycos xf13′′ex+ysin yf32′′+e2(x+y)f33′′        y22z=y(yz)=y(sin yf2+ex+yf3)=        cos yf2sin y(f22′′dydv+f23′′yw)+ex+yf3+ex+y(f32′′dydv+f33′′yw)=        cos yf2sin y(sin yf22′′+ex+yf23′′)+ex+yf3+ex+y(sin yf32′′+ex+yf33′′)=        ex+yf3cos yf2+sin2yf22′′2ex+ysin yf23′′+e2(x+y)f33′′.


13.  设 u = f ( x ,   y ) 的所有二阶偏导数连续,而 x = s − 3 t 2 , y = 3 s + t 2 ,证明 ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 =        ( ∂ u ∂ s ) 2 + ( ∂ u ∂ t ) 2 及 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = ∂ 2 u ∂ s 2 + ∂ 2 u ∂ t 2 . \begin{aligned}&13. \ 设u=f(x, \ y)的所有二阶偏导数连续,而x=\frac{s-\sqrt{3}t}{2},y=\frac{\sqrt{3}s+t}{2},证明\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2=\\\\&\ \ \ \ \ \ \left(\frac{\partial u}{\partial s}\right)^2+\left(\frac{\partial u}{\partial t}\right)^2及\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 u}{\partial s^2}+\frac{\partial^2 u}{\partial t^2}.&\end{aligned} 13. u=f(x, y)的所有二阶偏导数连续,而x=2s3 ty=23 s+t,证明(xu)2+(yu)2=      (su)2+(tu)2x22u+y22u=s22u+t22u.

解:

   ∂ u ∂ s = ∂ u ∂ x ∂ x ∂ s + ∂ u ∂ y ∂ y ∂ s = 1 2 ∂ u ∂ x + 3 2 ∂ u ∂ y ,    ∂ u ∂ t = ∂ u ∂ x ∂ x ∂ t + ∂ u ∂ y ∂ y ∂ t = − 3 2 ∂ u ∂ x + 1 2 ∂ u ∂ y ,   因此, ( ∂ u ∂ s ) 2 + ( ∂ u ∂ t ) 2 = ( 1 2 ∂ u ∂ x + 3 2 ∂ u ∂ y ) 2 + ( − 3 2 ∂ u ∂ x + 1 2 ∂ u ∂ y ) 2 = ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2   又因 ∂ 2 u ∂ s 2 = ∂ ∂ s ( ∂ u ∂ s ) = ∂ ∂ s ( 1 2 ∂ u ∂ x + 3 2 ∂ u ∂ y ) = 1 2 ( ∂ 2 u ∂ x 2 ∂ x ∂ s + ∂ 2 u ∂ x ∂ y ∂ y ∂ s ) + 3 2 ( ∂ 2 u ∂ y ∂ x ∂ x ∂ s + ∂ 2 u ∂ y 2 ∂ y ∂ s ) =    1 2 ( 1 2 ∂ 2 u ∂ x 2 + 3 2 ∂ 2 u ∂ x ∂ y ) + 3 2 ( 1 2 ∂ 2 u ∂ y ∂ x + 3 2 ∂ 2 u ∂ y 2 ) = 1 4 ∂ 2 u ∂ x 2 + 3 2 ∂ 2 u ∂ x ∂ y + 3 4 ∂ 2 u ∂ y 2 ,    ∂ 2 u ∂ t 2 = ∂ ∂ t ( ∂ u ∂ t ) = ∂ ∂ t ( − 3 2 ∂ u ∂ x + 1 2 ∂ u ∂ y ) = − 3 2 ( ∂ 2 u ∂ x 2 ∂ x ∂ t + ∂ 2 u ∂ x ∂ y ∂ y ∂ t ) + 1 2 ( ∂ 2 u ∂ y ∂ x ∂ x ∂ t + ∂ 2 u ∂ y 2 ∂ y ∂ t ) =    − 3 2 ( − 3 2 ∂ 2 u ∂ x 2 + 1 2 ∂ 2 u ∂ x ∂ y ) + 1 2 ( − 3 2 ∂ 2 u ∂ y ∂ x + 1 2 ∂ 2 u ∂ y 2 ) = 3 4 ∂ 2 u ∂ x 2 − 3 2 ∂ 2 u ∂ x ∂ y + 1 4 ∂ 2 u ∂ y 2 ,   所以, ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = ∂ 2 u ∂ s 2 + ∂ 2 u ∂ t 2 \begin{aligned} &\ \ \frac{\partial u}{\partial s}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial s}=\frac{1}{2}\frac{\partial u}{\partial x}+\frac{\sqrt{3}}{2}\frac{\partial u}{\partial y},\\\\ &\ \ \frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial t}=-\frac{\sqrt{3}}{2}\frac{\partial u}{\partial x}+\frac{1}{2}\frac{\partial u}{\partial y},\\\\ &\ \ 因此,\left(\frac{\partial u}{\partial s}\right)^2+\left(\frac{\partial u}{\partial t}\right)^2=\left(\frac{1}{2}\frac{\partial u}{\partial x}+\frac{\sqrt{3}}{2}\frac{\partial u}{\partial y}\right)^2+\left(-\frac{\sqrt{3}}{2}\frac{\partial u}{\partial x}+\frac{1}{2}\frac{\partial u}{\partial y}\right)^2=\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2\\\\ &\ \ 又因\frac{\partial^2 u}{\partial s^2}=\frac{\partial}{\partial s}\left(\frac{\partial u}{\partial s}\right)=\frac{\partial}{\partial s}\left(\frac{1}{2}\frac{\partial u}{\partial x}+\frac{\sqrt{3}}{2}\frac{\partial u}{\partial y}\right)=\frac{1}{2}\left(\frac{\partial^2 u}{\partial x^2}\frac{\partial x}{\partial s}+\frac{\partial^2 u}{\partial x\partial y}\frac{\partial y}{\partial s}\right)+\frac{\sqrt{3}}{2}\left(\frac{\partial^2 u}{\partial y\partial x}\frac{\partial x}{\partial s}+\frac{\partial^2 u}{\partial y^2}\frac{\partial y}{\partial s}\right)=\\\\ &\ \ \frac{1}{2}\left(\frac{1}{2}\frac{\partial^2 u}{\partial x^2}+\frac{\sqrt{3}}{2}\frac{\partial^2 u}{\partial x\partial y}\right)+\frac{\sqrt{3}}{2}\left(\frac{1}{2}\frac{\partial^2 u}{\partial y\partial x}+\frac{\sqrt{3}}{2}\frac{\partial^2 u}{\partial y^2}\right)=\frac{1}{4}\frac{\partial^2 u}{\partial x^2}+\frac{\sqrt{3}}{2}\frac{\partial^2 u}{\partial x\partial y}+\frac{3}{4}\frac{\partial^2 u}{\partial y^2},\\\\ &\ \ \frac{\partial^2 u}{\partial t^2}=\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\frac{\partial}{\partial t}\left(-\frac{\sqrt{3}}{2}\frac{\partial u}{\partial x}+\frac{1}{2}\frac{\partial u}{\partial y}\right)=-\frac{\sqrt{3}}{2}\left(\frac{\partial^2 u}{\partial x^2}\frac{\partial x}{\partial t}+\frac{\partial^2 u}{\partial x\partial y}\frac{\partial y}{\partial t}\right)+\frac{1}{2}\left(\frac{\partial^2 u}{\partial y\partial x}\frac{\partial x}{\partial t}+\frac{\partial^2 u}{\partial y^2}\frac{\partial y}{\partial t}\right)=\\\\ &\ \ -\frac{\sqrt{3}}{2}\left(-\frac{\sqrt{3}}{2}\frac{\partial^2 u}{\partial x^2}+\frac{1}{2}\frac{\partial^2 u}{\partial x\partial y}\right)+\frac{1}{2}\left(-\frac{\sqrt{3}}{2}\frac{\partial^2 u}{\partial y\partial x}+\frac{1}{2}\frac{\partial^2 u}{\partial y^2}\right)=\frac{3}{4}\frac{\partial^2 u}{\partial x^2}-\frac{\sqrt{3}}{2}\frac{\partial^2 u}{\partial x\partial y}+\frac{1}{4}\frac{\partial^2 u}{\partial y^2},\\\\ &\ \ 所以,\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 u}{\partial s^2}+\frac{\partial^2 u}{\partial t^2} & \end{aligned}   su=xusx+yusy=21xu+23 yu  tu=xutx+yuty=23 xu+21yu  因此,(su)2+(tu)2=(21xu+23 yu)2+(23 xu+21yu)2=(xu)2+(yu)2  又因s22u=s(su)=s(21xu+23 yu)=21(x22usx+xy2usy)+23 (yx2usx+y22usy)=  21(21x22u+23 xy2u)+23 (21yx2u+23 y22u)=41x22u+23 xy2u+43y22u  t22u=t(tu)=t(23 xu+21yu)=23 (x22utx+xy2uty)+21(yx2utx+y22uty)=  23 (23 x22u+21xy2u)+21(23 yx2u+21y22u)=43x22u23 xy2u+41y22u  所以,x22u+y22u=s22u+t22u