zl程序教程

您现在的位置是:首页 >  其它

当前栏目

高等数学(第七版)同济大学 习题12-5 个人解答

12 个人 习题 解答 高等数学 同济大学 第七版
2023-09-14 09:06:59 时间

高等数学(第七版)同济大学 习题12-5

 

1.  利用函数的幂级数展开式求下列各数的近似值: \begin{aligned}&1. \ 利用函数的幂级数展开式求下列各数的近似值:&\end{aligned} 1. 利用函数的幂级数展开式求下列各数的近似值:

   ( 1 )    l n   3  (误差不超过 0.0001 );    ( 2 )    e  (误差不超过 0.001 );    ( 3 )    522 9 (误差不超过 0.00001 );    ( 4 )    c o s   2 ∘  (误差不超过 0.0001 ) . \begin{aligned} &\ \ (1)\ \ ln\ 3\ (误差不超过0.0001);\\\\ &\ \ (2)\ \ \sqrt{e}\ (误差不超过0.001);\\\\ &\ \ (3)\ \ \sqrt[9]{522}(误差不超过0.00001);\\\\ &\ \ (4)\ \ cos\ 2^{\circ}\ (误差不超过0.0001). & \end{aligned}   (1)  ln 3 (误差不超过0.0001);  (2)  e  (误差不超过0.001);  (3)  9522 (误差不超过0.00001);  (4)  cos 2 (误差不超过0.0001.

解:

   ( 1 )   l n 1 + x 1 − x = 2 ( x + x 3 3 + x 5 5 + ⋅ ⋅ ⋅ + x 2 n − 1 2 n − 1 + ⋅ ⋅ ⋅ ) , x ∈ ( − 1 ,   1 ) ,令 1 + x 1 − x = 3 ,得 x = 1 2 ,则          l n   3 = l n   1 + 1 2 1 − 1 2 = 2 [ 1 2 + 1 3 ⋅ 2 3 + 1 5 ⋅ 2 5 + ⋅ ⋅ ⋅ + 1 ( 2 n − 1 ) 2 n − 1 + ⋅ ⋅ ⋅ ] ,          ∣ r n ∣ = 2 [ 1 ( 2 n + 1 ) 2 2 n + 1 + 1 ( 2 n + 3 ) 2 2 n + 3 + ⋅ ⋅ ⋅ ] = 2 ( 2 n + 1 ) 2 2 n + 1 [ 1 + ( 2 n + 1 ) 2 2 n + 1 ( 2 n + 3 ) 2 2 n + 3 + ( 2 n + 1 ) 2 2 n + 1 ( 2 n + 5 ) 2 2 n + 5 + ⋅ ⋅ ⋅ ] <          2 ( 2 n + 1 ) 2 2 n + 1 ( 1 + 1 2 2 + 1 2 4 + ⋅ ⋅ ⋅ ) = 2 ( 2 n + 1 ) 2 2 n + 1 ⋅ 1 1 − 1 4 = 1 3 ( 2 n + 1 ) 2 2 n − 2 ,          ∣ r 5 ∣ < 1 3 ⋅ 11 ⋅ 2 8 ≈ 0.00012 , ∣ r 6 ∣ < 1 3 ⋅ 13 ⋅ 2 10 ≈ 0.00003 < 1 0 − 4 ,取 n = 6 ,         则 l n   3 ≈ 2 ( 1 2 + 1 3 ⋅ 2 3 + 1 5 ⋅ 2 5 + ⋅ ⋅ ⋅ + 1 11 ⋅ 2 11 ) ,考虑到舍入误差,取五位小数,得 l n   3 ≈ 1.0986.    ( 2 )   e x = 1 + x + x 2 2 ! + ⋅ ⋅ ⋅ + x n n ! + ⋅ ⋅ ⋅ , x ∈ ( − ∞ ,   + ∞ ) ,令 x = 1 2 ,得 e = 1 + 1 2 + 1 2 ! 2 2 + ⋅ ⋅ ⋅ + 1 n ! 2 n + ⋅ ⋅ ⋅ ,           r n = 1 ( n + 1 ) ! 2 n + 1 + 1 ( n + 2 ) ! 2 n + 2 + ⋅ ⋅ ⋅ = 1 ( n + 1 ) ! 2 n + 1 [ 1 + 1 ( n + 2 ) ⋅ 2 + 1 ( n + 2 ) ( n + 3 ) ⋅ 2 2 + ⋅ ⋅ ⋅ ] <           1 ( n + 1 ) ! 2 n + 1 ( 1 + 1 2 + 1 2 2 + ⋅ ⋅ ⋅ ) = 1 ( n + 1 ) ! 2 n + 1 ⋅ 1 1 − 1 2 = 1 ( n + 1 ) ! 2 n , r 4 < 1 5 ! 2 4 ≈ 0.0005 < 1 0 − 3 ,取 n = 4 ,          考虑到舍入误差,取四位小数,得 e ≈ 1 + 1 2 + 1 2 ! 2 2 + 1 3 ! 2 3 + 1 4 ! 2 4 ≈ 1.648.    ( 3 )   522 9 = 2 9 + 10 9 = 2 ( 1 + 10 2 9 ) 1 9 ,因为 ( 1 + x ) m =          1 + m x + m ( m − 1 ) 2 ! x 2 + ⋅ ⋅ ⋅ + m ( m − 1 ) ⋅   ⋅ ⋅ ⋅   ⋅ ( m − n + 1 ) n ! x n + ⋅ ⋅ ⋅   ( − 1 < x < 1 ) ,         所以 522 9 = 2 ( 1 + 10 2 9 ) 1 9 = 2 [ 1 + 1 9 ⋅ 10 2 9 + 1 9 ( 1 9 − 1 ) 2 ! ⋅ 1 0 2 2 18 + ⋅ ⋅ ⋅ + 1 9 ( 1 9 − 1 ) ⋅   ⋅ ⋅ ⋅   ⋅ ( 1 9 − n + 1 ) n ! ⋅ 1 0 n 2 9 n + ⋅ ⋅ ⋅ ] =          2 ⋅ ( 1 + 1 9 ⋅ 10 2 9 − 1 9 ⋅ 8 9 2 ! ⋅ 1 0 2 2 18 + ⋅ ⋅ ⋅ ) = 2 + 2 9 ⋅ 10 2 9 − 1 9 ⋅ 8 9 ⋅ 1 0 2 2 18 + ⋅ ⋅ ⋅ ,上式右端第 2 项起为一交错级数,         则有 ∣ r 3 ∣ ≤ u 4 = 8 ⋅ 17 3 ⋅ 9 3 ⋅ 1 0 3 2 27 < 1 0 − 6 ,取 3 项,取六位小数,得 522 9 ≈ 2 + 2 9 ⋅ 10 2 9 − 8 9 2 ⋅ 1 0 2 2 18 ≈ 2.00430.    ( 4 )   c o s   2 ∘ = c o s   π 90 = 1 − 1 2 ! ( π 90 ) 2 + 1 4 ! ( π 90 ) 4 − ⋅ ⋅ ⋅ ,上式为交错级数, ∣ r 2 ∣ ≤ u 3 = 1 4 ! ( π 90 ) 4 < 1 0 − 7 ,         取 2 项,取五位小数,得 c o s   2 ∘ ≈ 1 − 1 2 ! ( π 90 ) 2 ≈ 0.9994. \begin{aligned} &\ \ (1)\ ln\frac{1+x}{1-x}=2\left(x+\frac{x^3}{3}+\frac{x^5}{5}+\cdot\cdot\cdot+\frac{x^{2n-1}}{2n-1}+\cdot\cdot\cdot\right),x \in (-1, \ 1),令\frac{1+x}{1-x}=3,得x=\frac{1}{2},则\\\\ &\ \ \ \ \ \ \ \ ln\ 3=ln\ \frac{1+\frac{1}{2}}{1-\frac{1}{2}}=2\left[\frac{1}{2}+\frac{1}{3\cdot 2^3}+\frac{1}{5\cdot 2^5}+\cdot\cdot\cdot+\frac{1}{(2n-1)^{2n-1}}+\cdot\cdot\cdot\right],\\\\ &\ \ \ \ \ \ \ \ |r_n|=2\left[\frac{1}{(2n+1)2^{2n+1}}+\frac{1}{(2n+3)2^{2n+3}}+\cdot\cdot\cdot\right]=\frac{2}{(2n+1)2^{2n+1}}\left[1+\frac{(2n+1)2^{2n+1}}{(2n+3)2^{2n+3}}+\frac{(2n+1)2^{2n+1}}{(2n+5)2^{2n+5}}+\cdot\cdot\cdot\right] \lt \\\\ &\ \ \ \ \ \ \ \ \frac{2}{(2n+1)2^{2n+1}}\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\cdot\cdot\cdot\right)=\frac{2}{(2n+1)2^{2n+1}}\cdot\frac{1}{1-\frac{1}{4}}=\frac{1}{3(2n+1)2^{2n-2}},\\\\ &\ \ \ \ \ \ \ \ |r_5| \lt \frac{1}{3\cdot 11\cdot 2^8} \approx 0.00012,|r_6| \lt \frac{1}{3\cdot 13\cdot 2^{10}} \approx 0.00003 \lt 10^{-4},取n=6,\\\\ &\ \ \ \ \ \ \ \ 则ln\ 3 \approx 2\left(\frac{1}{2}+\frac{1}{3\cdot 2^3}+\frac{1}{5\cdot 2^5}+\cdot\cdot\cdot+\frac{1}{11\cdot 2^{11}}\right),考虑到舍入误差,取五位小数,得ln\ 3 \approx 1.0986.\\\\ &\ \ (2)\ e^x=1+x+\frac{x^2}{2!}+\cdot\cdot\cdot+\frac{x^n}{n!}+\cdot\cdot\cdot,x \in (-\infty, \ +\infty),令x=\frac{1}{2},得\sqrt{e}=1+\frac{1}{2}+\frac{1}{2!2^2}+\cdot\cdot\cdot+\frac{1}{n!2^n}+\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ \ r_n=\frac{1}{(n+1)!2^{n+1}}+\frac{1}{(n+2)!2^{n+2}}+\cdot\cdot\cdot=\frac{1}{(n+1)!2^{n+1}}\left[1+\frac{1}{(n+2)\cdot 2}+\frac{1}{(n+2)(n+3)\cdot 2^2}+\cdot\cdot\cdot\right] \lt \\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{(n+1)!2^{n+1}}\left(1+\frac{1}{2}+\frac{1}{2^2}+\cdot\cdot\cdot\right)=\frac{1}{(n+1)!2^{n+1}}\cdot \frac{1}{1-\frac{1}{2}}=\frac{1}{(n+1)!2^n},r_4 \lt \frac{1}{5!2^4} \approx 0.0005 \lt 10^{-3},取n=4,\\\\ &\ \ \ \ \ \ \ \ \ 考虑到舍入误差,取四位小数,得\sqrt{e} \approx 1+\frac{1}{2}+\frac{1}{2!2^2}+\frac{1}{3!2^3}+\frac{1}{4!2^4} \approx 1.648.\\\\ &\ \ (3)\ \sqrt[9]{522}=\sqrt[9]{2^9+10}=2\left(1+\frac{10}{2^9}\right)^{\frac{1}{9}},因为(1+x)^m=\\\\ &\ \ \ \ \ \ \ \ 1+mx+\frac{m(m-1)}{2!}x^2+\cdot\cdot\cdot+\frac{m(m-1)\cdot\ \cdot\cdot\cdot\ \cdot(m-n+1)}{n!}x^n+\cdot\cdot\cdot\ (-1 \lt x \lt 1),\\\\ &\ \ \ \ \ \ \ \ 所以\sqrt[9]{522}=2\left(1+\frac{10}{2^9}\right)^{\frac{1}{9}}=2\left[1+\frac{1}{9}\cdot \frac{10}{2^9}+\frac{\frac{1}{9}\left(\frac{1}{9}-1\right)}{2!}\cdot \frac{10^2}{2^{18}}+\cdot\cdot\cdot+\frac{\frac{1}{9}\left(\frac{1}{9}-1\right)\cdot\ \cdot\cdot\cdot\ \cdot \left(\frac{1}{9}-n+1\right)}{n!}\cdot\frac{10^n}{2^{9n}}+\cdot\cdot\cdot\right]=\\\\ &\ \ \ \ \ \ \ \ 2\cdot \left(1+\frac{1}{9}\cdot \frac{10}{2^9}-\frac{\frac{1}{9}\cdot\frac{8}{9}}{2!}\cdot\frac{10^2}{2^{18}}+\cdot\cdot\cdot\right)=2+\frac{2}{9}\cdot\frac{10}{2^9}-\frac{1}{9}\cdot\frac{8}{9}\cdot\frac{10^2}{2^{18}}+\cdot\cdot\cdot,上式右端第2项起为一交错级数,\\\\ &\ \ \ \ \ \ \ \ 则有|r_3| \le u_4=\frac{8\cdot17}{3\cdot 9^3}\cdot \frac{10^3}{2^{27}} \lt 10^{-6},取3项,取六位小数,得\sqrt[9]{522} \approx 2+\frac{2}{9}\cdot \frac{10}{2^9}-\frac{8}{9^2}\cdot\frac{10^2}{2^{18}}\approx 2.00430.\\\\ &\ \ (4)\ cos\ 2^{\circ}=cos\ \frac{\pi}{90}=1-\frac{1}{2!}\left(\frac{\pi}{90}\right)^2+\frac{1}{4!}\left(\frac{\pi}{90}\right)^4-\cdot\cdot\cdot,上式为交错级数,|r_2|\le u_3=\frac{1}{4!}\left(\frac{\pi}{90}\right)^4 \lt 10^{-7},\\\\ &\ \ \ \ \ \ \ \ 取2项,取五位小数,得cos\ 2^{\circ} \approx 1-\frac{1}{2!}\left(\frac{\pi}{90}\right)^2 \approx 0.9994. & \end{aligned}   (1) ln1x1+x=2(x+3x3+5x5++2n1x2n1+)x(1, 1),令1x1+x=3,得x=21,则        ln 3=ln 1211+21=2[21+3231+5251++(2n1)2n11+]        rn=2[(2n+1)22n+11+(2n+3)22n+31+]=(2n+1)22n+12[1+(2n+3)22n+3(2n+1)22n+1+(2n+5)22n+5(2n+1)22n+1+]<        (2n+1)22n+12(1+221+241+)=(2n+1)22n+121411=3(2n+1)22n21        r5<3112810.00012r6<31321010.00003<104,取n=6        ln 32(21+3231+5251++112111),考虑到舍入误差,取五位小数,得ln 31.0986.  (2) ex=1+x+2!x2++n!xn+x(, +),令x=21,得e =1+21+2!221++n!2n1+         rn=(n+1)!2n+11+(n+2)!2n+21+=(n+1)!2n+11[1+(n+2)21+(n+2)(n+3)221+]<         (n+1)!2n+11(1+21+221+)=(n+1)!2n+111211=(n+1)!2n1r4<5!2410.0005<103,取n=4         考虑到舍入误差,取四位小数,得e 1+21+2!221+3!231+4!2411.648.  (3) 9522 =929+10 =2(1+2910)91,因为(1+x)m=        1+mx+2!m(m1)x2++n!m(m1)  (mn+1)xn+ (1<x<1)        所以9522 =2(1+2910)91=2[1+912910+2!91(911)218102++n!91(911)  (91n+1)29n10n+]=        2(1+9129102!9198218102+)=2+9229109198218102+,上式右端第2项起为一交错级数,        则有r3u4=393817227103<106,取3项,取六位小数,得9522 2+9229109282181022.00430.  (4) cos 2=cos 90π=12!1(90π)2+4!1(90π)4,上式为交错级数,r2u3=4!1(90π)4<107        2项,取五位小数,得cos 212!1(90π)20.9994.


2.  利用被积函数的幂级数展开式求下列定积分的近似值: \begin{aligned}&2. \ 利用被积函数的幂级数展开式求下列定积分的近似值:&\end{aligned} 2. 利用被积函数的幂级数展开式求下列定积分的近似值:

   ( 1 )    ∫ 0 0.5 1 1 + x 4 d x (误差不超过 0.0001 );    ( 2 )    ∫ 0 0.5 a r c t a n   x x d x  (误差不超过 0.001 ) . \begin{aligned} &\ \ (1)\ \ \int_{0}^{0.5}\frac{1}{1+x^4}dx(误差不超过0.0001);\\\\ &\ \ (2)\ \ \int_{0}^{0.5}\frac{arctan\ x}{x}dx\ (误差不超过0.001). & \end{aligned}   (1)  00.51+x41dx(误差不超过0.0001);  (2)  00.5xarctan xdx (误差不超过0.001.

解:

   ( 1 )   ∫ 0 0.5 1 1 + x 4 d x = ∫ 0 0.5 [ 1 − x 4 + x 8 − x 12 + ⋅ ⋅ ⋅ + ( − 1 ) n x 4 n + ⋅ ⋅ ⋅ ] d x = ( x − 1 5 x 5 + 1 9 x 9 − 1 13 x 13 + ⋅ ⋅ ⋅ ) ∣ 0 0.5 =          1 2 − 1 5 ⋅ 1 2 5 + 1 9 ⋅ 1 2 9 − 1 13 ⋅ 1 2 13 + ⋅ ⋅ ⋅ ,上式右端为一交错级数,有 ∣ r 3 ∣ ≤ u 4 = 1 13 ⋅ 1 2 13 ≈ 0.000009 < 1 0 − 4 ,         取 3 项,取五位小数,得 ∫ 0 0.5 1 1 + x 4 d x ≈ 1 2 − 1 5 ⋅ 1 2 5 + 1 9 ⋅ 1 2 9 ≈ 0.4940.    ( 2 )  因为 a r c t a n   x = x − x 3 3 + x 5 5 − ⋅ ⋅ ⋅ + ( − 1 ) n x 2 n + 1 2 n + 1 + ⋅ ⋅ ⋅   ( − 1 < x < 1 ) ,所以 ∫ 0 0.5 a r c t a n   x x d x =          ∫ 0 0.5 [ 1 − x 3 3 + x 4 5 − ⋅ ⋅ ⋅ + ( − 1 ) n x 2 n 2 n + 1 + ⋅ ⋅ ⋅ ] d x = ( x − x 3 9 + x 5 25 − x 7 49 + ⋅ ⋅ ⋅ ) ∣ 0 0.5 =          1 2 − 1 9 ⋅ 1 2 3 + 1 25 ⋅ 1 2 5 − 1 49 ⋅ 1 2 7 + ⋅ ⋅ ⋅ ,因为 ∣ r 3 ∣ ≤ u 4 = 1 49 ⋅ 1 2 7 ≈ 0.0002 < 1 0 − 3 ,取 3 项,         取四位小数,得 ∫ 0 0.5 a r c t a n   x x d x ≈ 1 2 − 1 9 ⋅ 1 2 3 + 1 2 5 ⋅ 1 25 ≈ 0.487. \begin{aligned} &\ \ (1)\ \int_{0}^{0.5}\frac{1}{1+x^4}dx=\int_{0}^{0.5}[1-x^4+x^8-x^{12}+\cdot\cdot\cdot+(-1)^nx^{4n}+\cdot\cdot\cdot]dx=\left(x-\frac{1}{5}x^5+\frac{1}{9}x^9-\frac{1}{13}x^{13}+\cdot\cdot\cdot\right)\bigg|_{0}^{0.5}=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}-\frac{1}{5}\cdot \frac{1}{2^5}+\frac{1}{9}\cdot\frac{1}{2^9}-\frac{1}{13}\cdot\frac{1}{2^{13}}+\cdot\cdot\cdot,上式右端为一交错级数,有|r_3| \le u_4=\frac{1}{13}\cdot\frac{1}{2^{13}}\approx 0.000009 \lt 10^{-4},\\\\ &\ \ \ \ \ \ \ \ 取3项,取五位小数,得\int_{0}^{0.5}\frac{1}{1+x^4}dx\approx \frac{1}{2}-\frac{1}{5}\cdot \frac{1}{2^5}+\frac{1}{9}\cdot\frac{1}{2^9}\approx 0.4940.\\\\ &\ \ (2)\ 因为arctan\ x=x-\frac{x^3}{3}+\frac{x^5}{5}-\cdot\cdot\cdot+(-1)^n\frac{x^{2n+1}}{2n+1}+\cdot\cdot\cdot\ (-1 \lt x \lt 1),所以\int_{0}^{0.5}\frac{arctan\ x}{x}dx=\\\\ &\ \ \ \ \ \ \ \ \int_{0}^{0.5}\left[1-\frac{x^3}{3}+\frac{x^4}{5}-\cdot\cdot\cdot+(-1)^n\frac{x^{2n}}{2n+1}+\cdot\cdot\cdot\right]dx=\left(x-\frac{x^3}{9}+\frac{x^5}{25}-\frac{x^7}{49}+\cdot\cdot\cdot\right)\bigg|_{0}^{0.5}=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}-\frac{1}{9}\cdot\frac{1}{2^3}+\frac{1}{25}\cdot\frac{1}{2^5}-\frac{1}{49}\cdot\frac{1}{2^7}+\cdot\cdot\cdot,因为|r_3| \le u_4=\frac{1}{49}\cdot\frac{1}{2^7}\approx 0.0002 \lt 10^{-3},取3项,\\\\ &\ \ \ \ \ \ \ \ 取四位小数,得\int_{0}^{0.5}\frac{arctan\ x}{x}dx\approx \frac{1}{2}-\frac{1}{9}\cdot \frac{1}{2^3}+\frac{1}{2^5}\cdot\frac{1}{25}\approx 0.487. & \end{aligned}   (1) 00.51+x41dx=00.5[1x4+x8x12++(1)nx4n+]dx=(x51x5+91x9131x13+) 00.5=        2151251+912911312131+,上式右端为一交错级数,有r3u4=13121310.000009<104        3项,取五位小数,得00.51+x41dx2151251+912910.4940.  (2) 因为arctan x=x3x3+5x5+(1)n2n+1x2n+1+ (1<x<1),所以00.5xarctan xdx=        00.5[13x3+5x4+(1)n2n+1x2n+]dx=(x9x3+25x549x7+) 00.5=        2191231+251251491271+,因为r3u4=4912710.0002<103,取3项,        取四位小数,得00.5xarctan xdx2191231+2512510.487.


3.  试用幂级数求下列各微分方程的解: \begin{aligned}&3. \ 试用幂级数求下列各微分方程的解:&\end{aligned} 3. 试用幂级数求下列各微分方程的解:

   ( 1 )    y ′ − x y − x = 1 ;    ( 2 )    y ′ ′ + x y ′ + y = 0 ;    ( 3 )    ( 1 − x ) y ′ = x 2 − y . \begin{aligned} &\ \ (1)\ \ y'-xy-x=1;\\\\ &\ \ (2)\ \ y''+xy'+y=0;\\\\ &\ \ (3)\ \ (1-x)y'=x^2-y. & \end{aligned}   (1)  yxyx=1  (2)  y′′+xy+y=0  (3)  (1x)y=x2y.

解:

   ( 1 )  设方程的解为 y = a 0 + a 1 x + a 2 x 2 + ⋅ ⋅ ⋅ + a n x n + ⋅ ⋅ ⋅  ( a 0 为任意常数),代入方程,         有 y ′ = a 1 + 2 a 2 x + 3 a 3 x 2 + ⋅ ⋅ ⋅ + ( n + 1 ) a n + 1 x n + ⋅ ⋅ ⋅ , − x y = − a 0 x − a 1 x 2 − ⋅ ⋅ ⋅ − a n − 1 x n − ⋅ ⋅ ⋅ , − x = − x ,          1 = a 1 + ( 2 a 2 − a 0 − 1 ) x + ( 3 a 3 − a 1 ) x 2 + ⋅ ⋅ ⋅ + [ ( n + 1 ) a n + 1 − a n − 1 ] x n + ⋅ ⋅ ⋅ ,比较系数可得, a 1 = 1 ,          a 2 = a 0 + 1 2 , a 3 = 1 3 , a 4 = a 2 4 = a 0 + 1 2 ⋅ 4 , a 5 = a 3 5 = 1 3 ⋅ 5 , a 6 = a 4 6 = a 0 + 1 2 ⋅ 4 ⋅ 6 ,   ⋅ ⋅ ⋅ ,          a 2 n − 1 = 1 3 ⋅ 5 ⋅   ⋅ ⋅ ⋅   ⋅ ( 2 n − 1 ) , a 2 n = a 0 + 1 2 ⋅ 4 ⋅ 6 ⋅   ⋅ ⋅ ⋅   ⋅ 2 n = a 0 + 1 n ! 2 n ,         可知 ∑ n = 1 ∞ a 2 n − 1 x 2 n − 1 , ∑ n = 0 ∞ a 2 n x 2 n 的收敛域是 ( − ∞ ,   + ∞ ) ,         所以 y = ∑ n = 0 ∞ a n x n = ∑ n = 1 ∞ a 2 n − 1 x 2 n − 1 + ∑ n = 0 ∞ a 2 n x 2 n = ∑ n = 1 ∞ x 2 n − 1 3 ⋅ 5 ⋅   ⋅ ⋅ ⋅   ⋅ ( 2 n − 1 ) + ( a 0 + 1 ) ∑ n = 0 ∞ x 2 n n ! 2 n − 1 =          ∑ n = 1 ∞ x 2 n − 1 3 ⋅ 5 ⋅   ⋅ ⋅ ⋅   ⋅ ( 2 n − 1 ) + ( a 0 + 1 ) ∑ n = 0 ∞ 1 n ! ( x 2 2 ) n − 1 ,因为 ∑ n = 0 ∞ 1 n ! ( x 2 2 ) n = e x 2 2 ,         记 a 0 + 1 = C , 1 ⋅ 3 ⋅ 5 ⋅   ⋅ ⋅ ⋅   ⋅ ( 2 n − 1 ) = ( 2 n − 1 ) ! ! ,所以 y = C e x 2 2 + ∑ n = 1 ∞ 1 ( 2 n − 1 ) ! ! x 2 n − 1 − 1 , x ∈ ( − ∞ ,   + ∞ ) .    ( 2 )  设方程的解 y = ∑ n = 0 ∞ a n x n ,其中 a 0 , a 1 是任意常数,则 y ′ = ∑ n = 1 ∞ n a n x n − 1 ,          y ′ ′ = ∑ n = 2 ∞ n ( n − 1 ) a n x n − 2 = ∑ n = 0 ∞ ( n + 2 ) ( n + 1 ) a n + 2 x n ,代入方程 y ′ ′ + x y ′ + y = 0 ,         得 ∑ n = 0 ∞ [ ( n + 2 ) ( n + 1 ) a n + 2 + n a n + a n ] x n = 0 ,则有 ( n + 2 ) ( n + 1 ) a n + 2 + ( n + 1 ) a n = 0 ,          a n + 2 = − a n n + 1   ( n = 0 , 1 , 2 , ⋅ ⋅ ⋅ ) ,当 n = 2 ( k − 1 ) 时, a 2 k = ( − 1 2 k ) a 2 k − 2 =          ( − 1 2 k ) ( − 1 2 k − 2 ) ⋅ ⋅ ⋅ ( − 1 2 ) a 0 = a 0 ( − 1 ) k k ! 2 k ,         当 n = 2 k − 1 时, a 2 k + 1 = ( − 1 2 k + 1 ) a 2 k − 1 = ( − 1 2 k + 1 ) ( − 1 2 k − 1 ) ⋅ ⋅ ⋅ ( − 1 3 ) a 1 = a 1 ( − 1 ) k ( 2 k + 1 ) ! ! ,         因为 ∑ n = 0 ∞ a 2 n x 2 n , ∑ n = 0 ∞ a 2 n + 1 x 2 n + 1 的收敛域为 ( − ∞ ,   + ∞ ) ,所以 y = ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ a 2 n x 2 n + ∑ n = 0 ∞ a 2 n + 1 x 2 n + 1 =           ∑ n = 0 ∞ a 0 ( − 1 ) n n ! 2 n x 2 n + ∑ n = 0 ∞ a 1 ( − 1 ) n ( 2 n + 1 ) ! ! x 2 n + 1 ,即 y = a 0 e − x 2 2 + a 1 ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! ! x 2 n + 1 , x ∈ ( − ∞ ,   + ∞ ) .    ( 3 )  设方程的解 y = ∑ n = 0 ∞ a n x n ,代入方程,得 ( 1 − x ) ∑ n = 1 ∞ n a n x n − 1 = x 2 − ∑ n = 0 ∞ a n x n ,         有 ∑ n = 1 ∞ n a n x n − 1 − ∑ n = 1 ∞ n a n x n + ∑ n = 0 ∞ a n x n = x 2 ,上式第一个级数 ∑ n = 1 ∞ n a n x n − 1 = ∑ n = 0 ∞ ( n + 1 ) a n + 1 x n ,         有 ∑ n = 0 ∞ [ ( n + 1 ) a n + 1 + ( 1 − n ) a n ] x n = x 2 ,比较系数,得 a 1 + a 0 = 0 , 2 a 2 = 0 , 3 a 3 − a 2 = 1 ,          ( n + 1 ) a n + 1 + ( 1 − n ) a n = 0   ( n ≥ 3 ) ,即 a 1 = − a 0 , a 2 = 0 , a 3 = 1 3 , a n + 1 = n − 1 n + 1 a n   ( n ≥ 3 ) ,         或 a n = n − 2 n a n − 1 = n − 2 n ⋅ n − 3 n − 1 ⋅ n − 4 n − 2 ⋅   ⋅ ⋅ ⋅   ⋅ 2 4 ⋅ 1 3 = 2 n ( n − 1 )   ( n ≥ 4 ) ,         于是 y = a 0 − a 0 x + 1 3 x 3 + 1 6 x 4 + 1 10 x 5 + ⋅ ⋅ ⋅ + 2 n ( n − 1 ) x n + ⋅ ⋅ ⋅ ,         或 y = a 0 ( 1 − x ) + x 3 [ 1 3 + 1 6 x + 1 10 x 2 + ⋅ ⋅ ⋅ + 2 ( n + 2 ) ( n + 3 ) x n + ⋅ ⋅ ⋅ ] . \begin{aligned} &\ \ (1)\ 设方程的解为y=a_0+a_1x+a_2x^2+\cdot\cdot\cdot+a_nx^n+\cdot\cdot\cdot\ (a_0为任意常数),代入方程,\\\\ &\ \ \ \ \ \ \ \ 有y'=a_1+2a_2x+3a_3x^2+\cdot\cdot\cdot+(n+1)a_{n+1}x^n+\cdot\cdot\cdot,-xy=-a_0x-a_1x^2-\cdot\cdot\cdot-a_{n-1}x^n-\cdot\cdot\cdot,-x=-x,\\\\ &\ \ \ \ \ \ \ \ 1=a_1+(2a_2-a_0-1)x+(3a_3-a_1)x^2+\cdot\cdot\cdot+[(n+1)a_{n+1}-a_{n-1}]x^n+\cdot\cdot\cdot,比较系数可得,a_1=1,\\\\ &\ \ \ \ \ \ \ \ a_2=\frac{a_0+1}{2},a_3=\frac{1}{3},a_4=\frac{a_2}{4}=\frac{a_0+1}{2 \cdot 4},a_5=\frac{a_3}{5}=\frac{1}{3\cdot 5},a_6=\frac{a_4}{6}=\frac{a_0+1}{2\cdot 4\cdot 6},\ \cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ a_{2n-1}=\frac{1}{3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot(2n-1)},a_{2n}=\frac{a_0+1}{2\cdot 4\cdot 6 \cdot\ \cdot\cdot\cdot\ \cdot 2n}=\frac{a_0+1}{n!2^n},\\\\ &\ \ \ \ \ \ \ \ 可知\sum_{n=1}^{\infty}a_{2n-1}x^{2n-1},\sum_{n=0}^{\infty}a_{2n}x^{2n}的收敛域是(-\infty, \ +\infty),\\\\ &\ \ \ \ \ \ \ \ 所以y=\sum_{n=0}^{\infty}a_nx^n=\sum_{n=1}^{\infty}a_{2n-1}x^{2n-1}+\sum_{n=0}^{\infty}a_{2n}x^{2n}=\sum_{n=1}^{\infty}\frac{x^{2n-1}}{3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot (2n-1)}+(a_0+1)\sum_{n=0}^{\infty}\frac{x^{2n}}{n!2^n}-1=\\\\ &\ \ \ \ \ \ \ \ \sum_{n=1}^{\infty}\frac{x^{2n-1}}{3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot (2n-1)}+(a_0+1)\sum_{n=0}^{\infty}\frac{1}{n!}\left(\frac{x^2}{2}\right)^n-1,因为\sum_{n=0}^{\infty}\frac{1}{n!}\left(\frac{x^2}{2}\right)^n=e^{\frac{x^2}{2}},\\\\ &\ \ \ \ \ \ \ \ 记a_0+1=C,1\cdot 3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot (2n-1)=(2n-1)!!,所以y=Ce^{\frac{x^2}{2}}+\sum_{n=1}^{\infty}\frac{1}{(2n-1)!!}x^{2n-1}-1,x \in (-\infty, \ +\infty).\\\\ &\ \ (2)\ 设方程的解y=\sum_{n=0}^{\infty}a_nx^n,其中a_0,a_1是任意常数,则y'=\sum_{n=1}^{\infty}na_nx^{n-1},\\\\ &\ \ \ \ \ \ \ \ y''=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^n,代入方程y''+xy'+y=0,\\\\ &\ \ \ \ \ \ \ \ 得\sum_{n=0}^{\infty}[(n+2)(n+1)a_{n+2}+na_n+a_n]x^n=0,则有(n+2)(n+1)a_{n+2}+(n+1)a_n=0,\\\\ &\ \ \ \ \ \ \ \ a_{n+2}=-\frac{a_n}{n+1}\ (n=0,1,2,\cdot\cdot\cdot),当n=2(k-1)时,a_{2k}=\left(-\frac{1}{2k}\right)a_{2k-2}=\\\\ &\ \ \ \ \ \ \ \ \left(-\frac{1}{2k}\right)\left(-\frac{1}{2k-2}\right)\cdot\cdot\cdot\left(-\frac{1}{2}\right)a_0=\frac{a_0(-1)^k}{k!2^k},\\\\ &\ \ \ \ \ \ \ \ 当n=2k-1时,a_{2k+1}=\left(-\frac{1}{2k+1}\right)a_{2k-1}=\left(-\frac{1}{2k+1}\right)\left(-\frac{1}{2k-1}\right)\cdot\cdot\cdot\left(-\frac{1}{3}\right)a_1=\frac{a_1(-1)^k}{(2k+1)!!},\\\\ &\ \ \ \ \ \ \ \ 因为\sum_{n=0}^{\infty}a_{2n}x^{2n},\sum_{n=0}^{\infty}a_{2n+1}x^{2n+1}的收敛域为(-\infty, \ +\infty),所以y=\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_{2n}x^{2n}+\sum_{n=0}^{\infty}a_{2n+1}x^{2n+1}=\\\\ &\ \ \ \ \ \ \ \ \ \sum_{n=0}^{\infty}\frac{a_0(-1)^n}{n!2^n}x^{2n}+\sum_{n=0}^{\infty}\frac{a_1(-1)^n}{(2n+1)!!}x^{2n+1},即y=a_0e^{-\frac{x^2}{2}}+a_1\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!!}x^{2n+1},x \in (-\infty, \ +\infty).\\\\ &\ \ (3)\ 设方程的解y=\sum_{n=0}^{\infty}a_nx^n,代入方程,得(1-x)\sum_{n=1}^{\infty}na_nx^{n-1}=x^2-\sum_{n=0}^{\infty}a_nx^n,\\\\ &\ \ \ \ \ \ \ \ 有\sum_{n=1}^{\infty}na_nx^{n-1}-\sum_{n=1}^{\infty}na_nx^n+\sum_{n=0}^{\infty}a_nx^n=x^2,上式第一个级数\sum_{n=1}^{\infty}na_nx^{n-1}=\sum_{n=0}^{\infty}(n+1)a_{n+1}x^n,\\\\ &\ \ \ \ \ \ \ \ 有\sum_{n=0}^{\infty}[(n+1)a_{n+1}+(1-n)a_n]x^n=x^2,比较系数,得a_1+a_0=0,2a_2=0,3a_3-a_2=1,\\\\ &\ \ \ \ \ \ \ \ (n+1)a_{n+1}+(1-n)a_n=0\ (n \ge 3),即a_1=-a_0,a_2=0,a_3=\frac{1}{3},a_{n+1}=\frac{n-1}{n+1}a_n\ (n \ge 3),\\\\ &\ \ \ \ \ \ \ \ 或a_n=\frac{n-2}{n}a_{n-1}=\frac{n-2}{n}\cdot\frac{n-3}{n-1}\cdot\frac{n-4}{n-2}\cdot\ \cdot\cdot\cdot\ \cdot \frac{2}{4}\cdot\frac{1}{3}=\frac{2}{n(n-1)}\ (n \ge 4),\\\\ &\ \ \ \ \ \ \ \ 于是y=a_0-a_0x+\frac{1}{3}x^3+\frac{1}{6}x^4+\frac{1}{10}x^5+\cdot\cdot\cdot+\frac{2}{n(n-1)}x^n+\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ 或y=a_0(1-x)+x^3\left[\frac{1}{3}+\frac{1}{6}x+\frac{1}{10}x^2+\cdot\cdot\cdot+\frac{2}{(n+2)(n+3)}x^n+\cdot\cdot\cdot\right]. & \end{aligned}   (1) 设方程的解为y=a0+a1x+a2x2++anxn+ a0为任意常数),代入方程,        y=a1+2a2x+3a3x2++(n+1)an+1xn+xy=a0xa1x2an1xnx=x        1=a1+(2a2a01)x+(3a3a1)x2++[(n+1)an+1an1]xn+,比较系数可得,a1=1        a2=2a0+1a3=31a4=4a2=24a0+1a5=5a3=351a6=6a4=246a0+1,         a2n1=35  (2n1)1a2n=246  2na0+1=n!2na0+1        可知n=1a2n1x2n1n=0a2nx2n的收敛域是(, +)        所以y=n=0anxn=n=1a2n1x2n1+n=0a2nx2n=n=135  (2n1)x2n1+(a0+1)n=0n!2nx2n1=        n=135  (2n1)x2n1+(a0+1)n=0n!1(2x2)n1,因为n=0n!1(2x2)n=e2x2        a0+1=C135  (2n1)=(2n1)!!,所以y=Ce2x2+n=1(2n1)!!1x2n11x(, +).  (2) 设方程的解y=n=0anxn,其中a0a1是任意常数,则y=n=1nanxn1        y′′=n=2n(n1)anxn2=n=0(n+2)(n+1)an+2xn,代入方程y′′+xy+y=0        n=0[(n+2)(n+1)an+2+nan+an]xn=0,则有(n+2)(n+1)an+2+(n+1)an=0        an+2=n+1an (n=012),当n=2(k1)时,a2k=(2k1)a2k2=        (2k1)(2k21)(21)a0=k!2ka0(1)k        n=2k1时,a2k+1=(2k+11)a2k1=(2k+11)(2k11)(31)a1=(2k+1)!!a1(1)k        因为n=0a2nx2nn=0a2n+1x2n+1的收敛域为(, +),所以y=n=0anxn=n=0a2nx2n+n=0a2n+1x2n+1=         n=0n!2na0(1)nx2n+n=0(2n+1)!!a1(1)nx2n+1,即y=a0e2x2+a1n=0(2n+1)!!(1)nx2n+1x(, +).  (3) 设方程的解y=n=0anxn,代入方程,得(1x)n=1nanxn1=x2n=0anxn        n=1nanxn1n=1nanxn+n=0anxn=x2,上式第一个级数n=1nanxn1=n=0(n+1)an+1xn        n=0[(n+1)an+1+(1n)an]xn=x2,比较系数,得a1+a0=02a2=03a3a2=1        (n+1)an+1+(1n)an=0 (n3),即a1=a0a2=0a3=31an+1=n+1n1an (n3)        an=nn2an1=nn2n1n3n2n4  4231=n(n1)2 (n4)        于是y=a0a0x+31x3+61x4+101x5++n(n1)2xn+        y=a0(1x)+x3[31+61x+101x2++(n+2)(n+3)2xn+].


4.  试用幂级数求下列方程满足所给初值条件的特解: \begin{aligned}&4. \ 试用幂级数求下列方程满足所给初值条件的特解:&\end{aligned} 4. 试用幂级数求下列方程满足所给初值条件的特解:

   ( 1 )    y ′ = y 2 + x 3 , y ∣ x = 0 = 1 2 ;    ( 2 )    ( 1 − x ) y ′ + y = 1 + x , y ∣ x = 0 = 0. \begin{aligned} &\ \ (1)\ \ y'=y^2+x^3,y|_{x=0}=\frac{1}{2};\\\\ &\ \ (2)\ \ (1-x)y'+y=1+x,y|_{x=0}=0. & \end{aligned}   (1)  y=y2+x3yx=0=21  (2)  (1x)y+y=1+xyx=0=0.

解:

   ( 1 )  因为 y ∣ x = 0 = 1 2 ,所以设方程特解为 y = 1 2 + ∑ n = 1 ∞ a n x n ,有 y ′ = ∑ n = 1 ∞ n a n x n − 1 = a 1 + ∑ n = 1 ∞ ( n + 1 ) a n + 1 x n ,         代入方程,有 a 1 + ∑ n = 1 ∞ ( n + 1 ) a n + 1 x n = x 3 + ( 1 2 + ∑ n = 1 ∞ a n x n ) 2 = x 3 + 1 4 + ∑ n = 1 ∞ a n x n + ( ∑ n = 1 ∞ a n x n ) 2 =          x 3 + 1 4 + ∑ n = 1 ∞ a n x n + [ a 1 2 x 2 + 2 a 1 a 2 x 3 + ( a 2 2 + 2 a 1 a 3 ) x 4 + ⋅ ⋅ ⋅ + ( ∑ i + j = n a i a j ) x n + ⋅ ⋅ ⋅ ] ,即          a 1 + ( 2 a 2 − a 1 ) x + ( 3 a 3 − a 2 − a 1 2 ) x 2 + ( 4 a 4 − a 3 − 2 a 1 a 2 ) x 3 + ⋅ ⋅ ⋅ + [ ( n + 1 ) a n + 1 − a n − ∑ i + j = n a i a j ] x n + ⋅ ⋅ ⋅ =          1 4 + x 3 ,比较系数,得 a 1 = 1 4 , 2 a 2 − a 1 = 0 , 3 a 3 − a 2 − a 1 2 = 0 , 4 a 4 − a 3 − 2 a 1 a 2 = 1 , ⋅ ⋅ ⋅ ,          ( n + 1 ) a n + 1 − a n − ∑ i + j = n a i a j = 0   ( n ≥ 4 ) ,解得 a 1 = 1 4 , a 2 = 1 8 , a 3 = 1 16 , a 4 = 9 32 , ⋅ ⋅ ⋅ ,         所以 y = 1 2 + 1 4 x + 1 8 x 2 + 1 16 x 3 + 9 32 x 4 + ⋅ ⋅ ⋅ .    ( 2 )  因为 y ∣ x = 0 = 0 ,所以设 y = ∑ n = 1 ∞ a n x n 是方程的特解,则 y ′ = ∑ n = 1 ∞ n a n x n − 1 ,代入方程,有          ( 1 − x ) ∑ n = 1 ∞ n a n x n − 1 + ∑ n = 1 ∞ a n x n = 1 + x ,即 ∑ n = 1 ∞ n a n x n − 1 − ∑ n = 1 ∞ n a n x n + ∑ n = 1 ∞ a n x n = 1 + x ,         或 a 1 + ∑ n = 1 ∞ [ ( n + 1 ) a n + 1 + ( 1 − n ) a n ] x n = 1 + x ,比较系数,得 a 1 = 1 , a 2 = 1 2 , a n + 1 = n − 1 n + 1 a n   ( n ≥ 2 ) ,         或 a n = n − 2 n a n − 1 = ( n − 2 ) ( n − 3 ) ⋅ ⋅ ⋅ 1 n ( n − 1 ) ⋅ ⋅ ⋅ 3 ⋅ 1 2 = 1 n ( n − 1 )   ( n ≥ 3 ) ,         所以 y = x + 1 2 x 2 + 1 6 x 3 + ⋅ ⋅ ⋅ + 1 n ( n − 1 ) x n + ⋅ ⋅ ⋅ . \begin{aligned} &\ \ (1)\ 因为y|_{x=0}=\frac{1}{2},所以设方程特解为y=\frac{1}{2}+\sum_{n=1}^{\infty}a_nx^n,有y'=\sum_{n=1}^{\infty}na_nx^{n-1}=a_1+\sum_{n=1}^{\infty}(n+1)a_{n+1}x^n,\\\\ &\ \ \ \ \ \ \ \ 代入方程,有a_1+\sum_{n=1}^{\infty}(n+1)a_{n+1}x^n=x^3+\left(\frac{1}{2}+\sum_{n=1}^{\infty}a_nx^n\right)^2=x^3+\frac{1}{4}+\sum_{n=1}^{\infty}a_nx^n+\left(\sum_{n=1}^{\infty}a_nx^n\right)^2=\\\\ &\ \ \ \ \ \ \ \ x^3+\frac{1}{4}+\sum_{n=1}^{\infty}a_nx^n+\left[a_1^2x^2+2a_1a_2x^3+(a_2^2+2a_1a_3)x^4+\cdot\cdot\cdot+\left(\sum_{i+j=n}a_ia_j\right)x^n+\cdot\cdot\cdot\right],即\\\\ &\ \ \ \ \ \ \ \ a_1+(2a_2-a_1)x+(3a_3-a_2-a_1^2)x^2+(4a_4-a_3-2a_1a_2)x^3+\cdot\cdot\cdot+\left[(n+1)a_{n+1}-a_n-\sum_{i+j=n}a_ia_j\right]x^n+\cdot\cdot\cdot=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{4}+x^3,比较系数,得a_1=\frac{1}{4},2a_2-a_1=0,3a_3-a_2-a_1^2=0,4a_4-a_3-2a_1a_2=1,\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ (n+1)a_{n+1}-a_n-\sum_{i+j=n}a_ia_j=0\ (n \ge 4),解得a_1=\frac{1}{4},a_2=\frac{1}{8},a_3=\frac{1}{16},a_4=\frac{9}{32},\cdot\cdot\cdot,\\\\ &\ \ \ \ \ \ \ \ 所以y=\frac{1}{2}+\frac{1}{4}x+\frac{1}{8}x^2+\frac{1}{16}x^3+\frac{9}{32}x^4+\cdot\cdot\cdot.\\\\ &\ \ (2)\ 因为y|_{x=0}=0,所以设y=\sum_{n=1}^{\infty}a_nx^n是方程的特解,则y'=\sum_{n=1}^{\infty}na_nx^{n-1},代入方程,有\\\\ &\ \ \ \ \ \ \ \ (1-x)\sum_{n=1}^{\infty}na_nx^{n-1}+\sum_{n=1}^{\infty}a_nx^n=1+x,即\sum_{n=1}^{\infty}na_nx^{n-1}-\sum_{n=1}^{\infty}na_nx^n+\sum_{n=1}^{\infty}a_nx^n=1+x,\\\\ &\ \ \ \ \ \ \ \ 或a_1+\sum_{n=1}^{\infty}[(n+1)a_{n+1}+(1-n)a_n]x^n=1+x,比较系数,得a_1=1,a_2=\frac{1}{2},a_{n+1}=\frac{n-1}{n+1}a_n\ (n \ge 2),\\\\ &\ \ \ \ \ \ \ \ 或a_n=\frac{n-2}{n}a_{n-1}=\frac{(n-2)(n-3)\cdot\cdot\cdot1}{n(n-1)\cdot\cdot\cdot3}\cdot\frac{1}{2}=\frac{1}{n(n-1)}\ (n \ge 3),\\\\ &\ \ \ \ \ \ \ \ 所以y=x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdot\cdot\cdot+\frac{1}{n(n-1)}x^n+\cdot\cdot\cdot. & \end{aligned}   (1) 因为yx=0=21,所以设方程特解为y=21+n=1anxn,有y=n=1nanxn1=a1+n=1(n+1)an+1xn        代入方程,有a1+n=1(n+1)an+1xn=x3+(21+n=1anxn)2=x3+41+n=1anxn+(n=1anxn)2=        x3+41+n=1anxn+[a12x2+2a1a2x3+(a22+2a1a3)x4++(i+j=naiaj)xn+],即        a1+(2a2a1)x+(3a3a2a12)x2+(4a4a32a1a2)x3++[(n+1)an+1ani+j=naiaj]xn+=        41+x3,比较系数,得a1=412a2a1=03a3a2a12=04a4a32a1a2=1        (n+1)an+1ani+j=naiaj=0 (n4),解得a1=41a2=81a3=161a4=329        所以y=21+41x+81x2+161x3+329x4+.  (2) 因为yx=0=0,所以设y=n=1anxn是方程的特解,则y=n=1nanxn1,代入方程,有        (1x)n=1nanxn1+n=1anxn=1+x,即n=1nanxn1n=1nanxn+n=1anxn=1+x        a1+n=1[(n+1)an+1+(1n)an]xn=1+x,比较系数,得a1=1a2=21an+1=n+1n1an (n2)        an=nn2an1=n(n1)3(n2)(n3)121=n(n1)1 (n3)        所以y=x+21x2+61x3++n(n1)1xn+.


5.  验证函数 y ( x ) = 1 + x 3 3 ! + x 6 6 ! + ⋅ ⋅ ⋅ + x 3 n ( 3 n ) ! + ⋅ ⋅ ⋅ ( − ∞ < x < + ∞ ) 满足微分方程 y ′ ′ + y ′ + y = e x ,并     利用此结果求幂级数 ∑ n = 0 ∞ x 3 n ( 3 n ) ! 的和函数 . \begin{aligned}&5. \ 验证函数y(x)=1+\frac{x^3}{3!}+\frac{x^6}{6!}+\cdot\cdot\cdot+\frac{x^{3n}}{(3n)!}+\cdot\cdot\cdot(-\infty \lt x \lt +\infty)满足微分方程y''+y'+y=e^x,并\\\\&\ \ \ \ 利用此结果求幂级数\sum_{n=0}^{\infty}\frac{x^{3n}}{(3n)!}的和函数.&\end{aligned} 5. 验证函数y(x)=1+3!x3+6!x6++(3n)!x3n+(<x<+)满足微分方程y′′+y+y=ex,并    利用此结果求幂级数n=0(3n)!x3n的和函数.

解:

  因为 y ( x ) = 1 + x 3 3 ! + x 6 6 ! + ⋅ ⋅ ⋅ + x 3 n ( 3 n ) ! + ⋅ ⋅ ⋅ ,    y ′ ( x ) = x 2 2 ! + x 5 5 ! + ⋅ ⋅ ⋅ + x 3 n − 1 ( 3 n − 1 ) ! + ⋅ ⋅ ⋅ ,    y ′ ′ ( x ) = x + x 4 4 ! + ⋅ ⋅ ⋅ + x 3 n − 2 ( 3 n − 2 ) ! + ⋅ ⋅ ⋅ ,则 y ′ ′ ( x ) + y ′ ( x ) + y ( x ) = ∑ n = 0 ∞ x n n ! = e x ,   所以函数 y ( x ) 满足微分方程 y ′ ′ + y ′ + y = e x ,    y ′ ′ + y ′ + y = e x 对应的齐次方程 y ′ ′ + y ′ + y = 0 的特征方程为 r 2 + r + 1 = 0 ,根为 r 1 , r 2 = − 1 2 ± 3 2 i ,   因此齐次方程的通解为 Y = e − x 2 ( C 1 c o s 3 2 x + C 2 s i n 3 2 x ) ,设非齐次微分方程的特解为 y ∗ = A e x ,   代入方程 y ′ ′ + y ′ + y = e x ,得 A = 1 3 ,则 y ∗ = 1 3 e x ,非齐次微分方程的通解为    y = Y + y ∗ = e − x 2 ( C 1 c o s 3 2 x + C 2 s i n 3 2 x ) + 1 3 e x ,幂级数的和函数 y ( x ) 满足, y ( 0 ) = 1 , y ′ ( 0 ) = 0 ,   则 y ( 0 ) = 1 = C 1 + 1 3 , y ′ ( 0 ) = 0 = − 1 2 C 1 + 3 2 C 2 + 1 3 ,得 C 1 = 2 3 , C 2 = 0 ,根据微分方程初值问题解的唯一性,   可得幂级数的和函数为 y ( x ) = 2 3 e − x 2 c o s 3 2 x + 1 3 e x   ( − ∞ < x < + ∞ ) . \begin{aligned} &\ \ 因为y(x)=1+\frac{x^3}{3!}+\frac{x^6}{6!}+\cdot\cdot\cdot+\frac{x^{3n}}{(3n)!}+\cdot\cdot\cdot,\\\\ &\ \ y'(x)=\frac{x^2}{2!}+\frac{x^5}{5!}+\cdot\cdot\cdot+\frac{x^{3n-1}}{(3n-1)!}+\cdot\cdot\cdot,\\\\ &\ \ y''(x)=x+\frac{x^4}{4!}+\cdot\cdot\cdot+\frac{x^{3n-2}}{(3n-2)!}+\cdot\cdot\cdot,则y''(x)+y'(x)+y(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!}=e^x,\\\\ &\ \ 所以函数y(x)满足微分方程y''+y'+y=e^x,\\\\ &\ \ y''+y'+y=e^x对应的齐次方程y''+y'+y=0的特征方程为r^2+r+1=0,根为r_1,r_2=-\frac{1}{2}\pm \frac{\sqrt{3}}{2}i,\\\\ &\ \ 因此齐次方程的通解为Y=e^{-\frac{x}{2}}\left(C_1cos\frac{\sqrt{3}}{2}x+C_2sin\frac{\sqrt{3}}{2}x\right),设非齐次微分方程的特解为y^*=Ae^x,\\\\ &\ \ 代入方程y''+y'+y=e^x,得A=\frac{1}{3},则y^*=\frac{1}{3}e^x,非齐次微分方程的通解为\\\\ &\ \ y=Y+y^*=e^{-\frac{x}{2}}\left(C_1cos\frac{\sqrt{3}}{2}x+C_2sin\frac{\sqrt{3}}{2}x\right)+\frac{1}{3}e^x,幂级数的和函数y(x)满足,y(0)=1,y'(0)=0,\\\\ &\ \ 则y(0)=1=C_1+\frac{1}{3},y'(0)=0=-\frac{1}{2}C_1+\frac{\sqrt{3}}{2}C_2+\frac{1}{3},得C_1=\frac{2}{3},C_2=0,根据微分方程初值问题解的唯一性,\\\\ &\ \ 可得幂级数的和函数为y(x)=\frac{2}{3}e^{-\frac{x}{2}}cos\frac{\sqrt{3}}{2}x+\frac{1}{3}e^x\ (-\infty \lt x \lt +\infty). & \end{aligned}   因为y(x)=1+3!x3+6!x6++(3n)!x3n+  y(x)=2!x2+5!x5++(3n1)!x3n1+  y′′(x)=x+4!x4++(3n2)!x3n2+,则y′′(x)+y(x)+y(x)=n=0n!xn=ex  所以函数y(x)满足微分方程y′′+y+y=ex  y′′+y+y=ex对应的齐次方程y′′+y+y=0的特征方程为r2+r+1=0,根为r1r2=21±23 i  因此齐次方程的通解为Y=e2x(C1cos23 x+C2sin23 x),设非齐次微分方程的特解为y=Aex  代入方程y′′+y+y=ex,得A=31,则y=31ex,非齐次微分方程的通解为  y=Y+y=e2x(C1cos23 x+C2sin23 x)+31ex,幂级数的和函数y(x)满足,y(0)=1y(0)=0  y(0)=1=C1+31y(0)=0=21C1+23 C2+31,得C1=32C2=0,根据微分方程初值问题解的唯一性,  可得幂级数的和函数为y(x)=32e2xcos23 x+31ex (<x<+).


6.  利用欧拉公式将函数 e x c o s   x 展开成 x 的幂级数 . \begin{aligned}&6. \ 利用欧拉公式将函数e^xcos\ x展开成x的幂级数.&\end{aligned} 6. 利用欧拉公式将函数excos x展开成x的幂级数.

解:

  根据欧拉公式 e i x = c o s   x + i   s i n   x 可知, c o s   x = R e ( e i x ) ,所以 e x c o s   x = e x ⋅ R e ( e i x ) = R e ( e x ⋅ e i x ) = R e [ e ( 1 + i ) x ] ,   因为 e ( 1 + i ) x = ∑ n = 0 ∞ 1 n ! ( 1 + i ) n x n = ∑ n = 0 ∞ [ 2 ( c o s   π 4 + i   s i n   π 4 ) ] n x n n ! = ∑ n = 0 ∞ ( c o s n π 4 + i   s i n n π 4 ) 2 n 2 ⋅ x n n ! ,    x ∈ ( − ∞ ,   + ∞ ) ,所以 e x c o s   x = R e [ e ( 1 + i ) x ] = ∑ n = 0 ∞ c o s n π 4 ⋅ 2 n 2 ⋅ x n n ! , x ∈ ( − ∞ ,   + ∞ ) . \begin{aligned} &\ \ 根据欧拉公式e^{ix}=cos\ x+i\ sin\ x可知,cos\ x=Re(e^{ix}),所以e^xcos\ x=e^x\cdot Re(e^{ix})=Re(e^x\cdot e^{ix})=Re[e^{(1+i)x}],\\\\ &\ \ 因为e^{(1+i)x}=\sum_{n=0}^{\infty}\frac{1}{n!}(1+i)^nx^n=\sum_{n=0}^{\infty}\left[\sqrt{2}\left(cos\ \frac{\pi}{4}+i\ sin\ \frac{\pi}{4}\right)\right]^n\frac{x^n}{n!}=\sum_{n=0}^{\infty}\left(cos\frac{n\pi}{4}+i\ sin\frac{n\pi}{4}\right)2^{\frac{n}{2}}\cdot\frac{x^n}{n!},\\\\ &\ \ x \in (-\infty, \ +\infty),所以e^xcos\ x=Re[e^{(1+i)x}]=\sum_{n=0}^{\infty}cos\frac{n\pi}{4}\cdot2^{\frac{n}{2}}\cdot\frac{x^n}{n!},x \in (-\infty, \ +\infty). & \end{aligned}   根据欧拉公式eix=cos x+i sin x可知,cos x=Re(eix),所以excos x=exRe(eix)=Re(exeix)=Re[e(1+i)x]  因为e(1+i)x=n=0n!1(1+i)nxn=n=0[2 (cos 4π+i sin 4π)]nn!xn=n=0(cos4+i sin4)22nn!xn  x(, +),所以excos x=Re[e(1+i)x]=n=0cos422nn!xnx(, +).