zl程序教程

您现在的位置是:首页 >  其它

当前栏目

广义最小残量法

最小 广义
2023-09-14 09:06:47 时间

Arnoldi迭代

目标:得到一组标准正交基 v 1 , ⋯   , v m \mathbf{v}_1,\cdots,\mathbf{v}_m v1,,vm,使得
K m ( A , r 0 ) = span ⁡ { v 1 , ⋯   , v m } \mathcal{K}_m\left(\mathbf{A},\mathbf{r}_0\right)=\operatorname{span}\left\{\mathbf{v}_1,\cdots,\mathbf{v}_m\right\} Km(A,r0)=span{v1,,vm}
显然 v 1 = r 0 ∥ r 0 ∥ \mathbf{v}_1=\frac{\mathbf{r}_0}{\|\mathbf{r}_0\|} v1=r0r0

假设已经得到 K j ( A , r 0 ) = span ⁡ ( v 1 , ⋯   , v j ) \mathcal{K}_j\left(\mathbf{A},\mathbf{r}_0\right)=\operatorname{span}\left(\mathbf{v}_1,\cdots,\mathbf{v}_j\right) Kj(A,r0)=span(v1,,vj)
现在要求 v j + 1 \mathbf{v}_{j+1} vj+1
v j ∈ K j ( A , r 0 ) ⇒ A v j ∈ A K j ( A , r 0 ) ⊂ K j + 1 ( A , r 0 ) \mathbf{v}_j\in\mathcal{K}_j\left(\mathbf{A},\mathbf{r}_0\right)\Rightarrow\mathbf{A}\mathbf{v}_j\in \mathbf{A}\mathcal{K}_j\left(\mathbf{A},\mathbf{r}_0\right)\subset\mathcal{K}_{j+1}\left(\mathbf{A},\mathbf{r}_0\right) vjKj(A,r0)AvjAKj(A,r0)Kj+1(A,r0)
那么
A v j = ∑ i = 0 j + 1 h i j v i \mathbf{A}\mathbf{v}_j=\sum_{i=0}^{j+1}h_{ij}\mathbf{v}_i Avj=i=0j+1hijvi

v i T A v j = h i j ( i = 0 , 1 , ⋯   , j ) \mathbf{v}_i^T\mathbf{A}\mathbf{v}_j=\mathbf{h}_{ij}\left(i=0,1,\cdots,j\right) viTAvj=hij(i=0,1,,j)
于是
h j + 1 , j v j + 1 = A v j − ∑ i = 0 j h i j v j h_{j+1,j}\mathbf{v}_{j+1}=\mathbf{A}\mathbf{v}_j-\sum_{i=0}^{j}h_{ij}\mathbf{v}_j hj+1,jvj+1=Avji=0jhijvj
所以
{ v j + 1 = A v j − ∑ i = 0 j h i j v j ∥ A v j − ∑ i = 0 j h i j v j ∥ h j + 1 , j = ∥ A v j − ∑ i = 0 j h i j v j ∥ \begin{cases} \mathbf{v}_{j+1}=\frac{\mathbf{A}\mathbf{v}_j-\sum_{i=0}^{j}h_{ij}\mathbf{v}_j}{\|\mathbf{A}\mathbf{v}_j-\sum_{i=0}^{j}h_{ij}\mathbf{v}_j\|}\\ h_{j+1,j}=\|\mathbf{A}\mathbf{v}_j-\sum_{i=0}^{j}h_{ij}\mathbf{v}_j\|\\ \end{cases} vj+1=Avji=0jhijvjAvji=0jhijvjhj+1,j=Avji=0jhijvj

如果某一轮迭代中, h j + 1 , j = 0 h_{j+1,j}=0 hj+1,j=0,则可以提前停止
可以证明Arnoldi迭代提前停止,当且仅当 dim ⁡ K k < k \operatorname{dim}\mathcal{K}_k<k dimKk<k

q m ( A ) q_m\left(\mathbf{A}\right) qm(A) m m m阶多项式
v 1 = q 0 ( A ) v 1 \mathbf{v}_1=q_0\left(\mathbf{A}\right)\mathbf{v}_1 v1=q0(A)v1
假设当 i ≤ j i\le j ij时, v j = q j − 1 ( A ) v 1 \mathbf{v}_j=q_{j-1}\left(\mathbf{A}\right)\mathbf{v}_1 vj=qj1(A)v1成立,则
h j + 1 , j v j + 1 = A v j − ∑ i = 0 j h i j v j = q j + 1 ( A ) v 1 h_{j+1,j}\mathbf{v}_{j+1}=\mathbf{A}\mathbf{v}_j-\sum_{i=0}^{j}h_{ij}\mathbf{v}_j=q_{j+1}\left(\mathbf{A}\right)\mathbf{v}_1 hj+1,jvj+1=Avji=0jhijvj=qj+1(A)v1
也就是说,只要没有提前停止,就有 K m ( A , r 0 ) = span ⁡ { v 1 , ⋯   , v m } \mathcal{K}_m\left(\mathbf{A},\mathbf{r}_0\right)=\operatorname{span}\left\{\mathbf{v}_1,\cdots,\mathbf{v}_m\right\} Km(A,r0)=span{v1,,vm}
在这里插入图片描述

Arnoldi迭代最后会产生一个Hessenberg矩阵 H ˉ ∈ R ( k + 1 ) × k \bar{\mathbf{H}}\in\mathbb{R}^{\left(k+1\right)\times k} HˉR(k+1)×k
使得
A V m = V m + 1 H ˉ m = V m H m + v m + 1 ( h m + 1 , m e m T ) = V m H m + w m e m T V m T A V m = H m \begin{aligned} \mathbf{A}\mathbf{V}_m &=\mathbf{V}_{m+1}\bar{\mathbf{H}}_m\\ &=\mathbf{V}_m\mathbf{H}_m+\mathbf{v}_{m+1}\left(h_{m+1,m}\mathbf{e}_m^T\right)\\ &=\mathbf{V}_m\mathbf{H}_m+\mathbf{w}_m\mathbf{e}_m^T\\ \mathbf{V}_m^T\mathbf{A}\mathbf{V}_m &=\mathbf{H}_m \end{aligned} AVmVmTAVm=Vm+1Hˉm=VmHm+vm+1(hm+1,memT)=VmHm+wmemT=Hm
其中 H m \mathbf{H}_m Hm H ˉ m \bar{\mathbf{H}}_m Hˉm的前 m m m
注意 V k + 1 T V k + 1 = I \mathbf{V}_{k+1}^T\mathbf{V}_{k+1}=\mathbf{I} Vk+1TVk+1=I,但是 V k + 1 V k + 1 T \mathbf{V}_{k+1}\mathbf{V}_{k+1}^T Vk+1Vk+1T不一定等于单位矩阵

修改版

在这里插入图片描述
主要区别就是 h i j = ( w j , v i ) h_{ij}=\left(w_j,v_i\right) hij=(wj,vi),因为 v i T v j = 0 \mathbf{v}_i^T\mathbf{v}_j=0 viTvj=0,所以数值上是一样的

Householder变换

在这里插入图片描述
其中3-5行是产生Householder的反射矩阵

其实相当于对 v , A v 1 , A v 2 , ⋯   , A v m \mathbf{v},\mathbf{A}\mathbf{v}_1,\mathbf{A}\mathbf{v}_2,\cdots,\mathbf{A}\mathbf{v}_m v,Av1,Av2,,Avm做householder正交化或者householder版QR分解


Q j = P j P j − 1 ⋯ P 1 \mathbf{Q}_j=\mathbf{P}_j\mathbf{P}_{j-1}\cdots\mathbf{P}_1 Qj=PjPj1P1
由第8行
Q j A v j = z j + 1 \mathbf{Q}_j\mathbf{A}\mathbf{v}_j=\mathbf{z}_{j+1}\\ QjAvj=zj+1
由第6行
h j = P j + 1 z j + 1 = P j + 1 Q j A v j = Q j + 1 A v j \mathbf{h}_j=\mathbf{P}_{j+1}\mathbf{z}_{j+1}=\mathbf{P}_{j+1}\mathbf{Q}_j\mathbf{A}\mathbf{v}_j=\mathbf{Q}_{j+1}\mathbf{A}\mathbf{v}_j hj=Pj+1zj+1=Pj+1QjAvj=Qj+1Avj
注意到 h j \mathbf{h}_{j} hj j + 1 , ⋯   , n j+1,\cdots,n j+1,,n分量都是 0 0 0,所以 P i h j = h j ( i ≥ j + 2 ) \mathbf{P}_i\mathbf{h}_j=\mathbf{h}_j\left(i\ge j+2\right) Pihj=hj(ij+2),于是
h j = P m ⋯ P j + 2 h j = Q m A v j \mathbf{h}_j=\mathbf{P}_m\cdots\mathbf{P}_{j+2}\mathbf{h}_j=\mathbf{Q}_m\mathbf{A}\mathbf{v}_j hj=PmPj+2hj=QmAvj
于是
Q m ( v , A v 1 , ⋯   , A v m ) = ( h 0 , ⋯   , h m ) \mathbf{Q}_m\left(\mathbf{v},\mathbf{A}\mathbf{v}_1,\cdots,\mathbf{A}\mathbf{v}_m\right)=\left(\mathbf{h}_0,\cdots,\mathbf{h}_m\right) Qm(v,Av1,,Avm)=(h0,,hm)
( h 0 , ⋯   , h m ) \left(\mathbf{h}_0,\cdots,\mathbf{h}_m\right) (h0,,hm) n × ( m + 1 ) n\times \left(m+1\right) n×(m+1)的矩阵, Q m \mathbf{Q}_m Qm是标准正交矩阵
H ˉ m \bar{\mathbf{H}}_m Hˉm ( h 1 , ⋯   , h m ) \left(\mathbf{h}_1,\cdots,\mathbf{h}_m\right) (h1,,hm)的前 m + 1 m+1 m+1
A v j = Q j + 1 T h j = Q j + 1 T ∑ i = 1 j + 1 h i j e i = ∑ i = 1 j + 1 h i j Q j + 1 T e i \mathbf{A}\mathbf{v}_j=\mathbf{Q}_{j+1}^T\mathbf{h}_j=\mathbf{Q}_{j+1}^T\sum_{i=1}^{j+1}h_{ij}\mathbf{e}_i=\sum_{i=1}^{j+1}h_{ij}\mathbf{Q}_{j+1}^T\mathbf{e}_i Avj=Qj+1Thj=Qj+1Ti=1j+1hijei=i=1j+1hijQj+1Tei
注意到 P k e i = e i ( i < k ) \mathbf{P}_k\mathbf{e}_i=\mathbf{e}_i\left(i<k\right) Pkei=ei(i<k)
Q j + 1 T e i = P 1 ⋯ P j + 1 e i = v i ( i ≤ j + 1 ) \mathbf{Q}_{j+1}^T\mathbf{e}_i=\mathbf{P}_1\cdots\mathbf{P}_{j+1}\mathbf{e}_i=\mathbf{v}_i\left(i\le j+1\right) Qj+1Tei=P1Pj+1ei=vi(ij+1)
于是
A v j = ∑ i = 1 j + 1 h i j v i \mathbf{A}\mathbf{v}_j=\sum_{i=1}^{j+1}h_{ij}\mathbf{v}_i Avj=i=1j+1hijvi
所以
A V m = V m + 1 H ˉ m \mathbf{A}\mathbf{V}_m=\mathbf{V}_{m+1}\bar{\mathbf{H}}_m AVm=Vm+1Hˉm

广义极小残量法

广义极小残量法(Generalized Minimal RESidual,GMRES)
考虑大型线性方程组
A x = b \mathbf{Ax}=\mathbf{b} Ax=b

考虑Krylov子空间
K m ( A , r 0 ) = span ⁡ { r 0 , A r 0 , ⋯   , A m − 1 r 0 } \mathcal{K}_m\left(\mathbf{A},\mathbf{r}_0\right)=\operatorname{span}\left\{\mathbf{r}_0,\mathbf{A}\mathbf{r}_0,\cdots,\mathbf{A}^{m-1}\mathbf{r}_0\right\} Km(A,r0)=span{r0,Ar0,,Am1r0}
x ( 0 ) \mathbf{x}^{(0)} x(0)为起点
GMRES考虑解 min ⁡ x ∈ x ( 0 ) + K m ( A , r 0 ) ∥ A x − b ∥ \min\limits_{\mathbf{x}\in \mathbf{x}^{(0)}+\mathcal{K}_m\left(\mathbf{A},\mathbf{r}_0\right)}\|\mathbf{A}\mathbf{x}-\mathbf{b}\| xx(0)+Km(A,r0)minAxb

v 1 , ⋯   , v m \mathbf{v}_1,\cdots,\mathbf{v}_m v1,,vm为一组标准正交基
V m = ( v 1 , ⋯   , v m ) ∈ R n × m \mathbf{V}_m=\left(\mathbf{v}_1,\cdots,\mathbf{v}_m\right)\in\mathbb{R}^{n\times m} Vm=(v1,,vm)Rn×m
x ( m ) ∈ x ( 0 ) + K m ( A , r 0 ) \mathbf{x}^{(m)}\in\mathbf{x}^{(0)}+\mathcal{K}_m\left(\mathbf{A},\mathbf{r}_0\right) x(m)x(0)+Km(A,r0)可以写作 x ( m ) = x ( 0 ) − V m y \mathbf{x}^{(m)}=\mathbf{x}^{(0)}-\mathbf{V}_m\mathbf{y} x(m)=x(0)Vmy,其中 y ∈ R m \mathbf{y}\in\mathbb{R}^m yRm
由Arnoldi迭代
b − A x = b − A ( x ( 0 ) + V m y ) = r 0 − A V m y = β v 1 − V m + 1 H ˉ m y = V m + 1 ( β e 1 − H ˉ m y ) \begin{aligned} \mathbf{b}-\mathbf{Ax} &= \mathbf{b}-\mathbf{A}\left(\mathbf{x}^{(0)}+\mathbf{V}_m\mathbf{y}\right)\\ &= \mathbf{r}_0-\mathbf{A}\mathbf{V}_m\mathbf{y}\\ &= \beta \mathbf{v}_1-\mathbf{V}_{m+1}\bar{\mathbf{H}}_m\mathbf{y}\\ &=\mathbf{V}_{m+1}\left(\beta\mathbf{e}_1-\bar{\mathbf{H}}_m\mathbf{y}\right) \end{aligned} bAx=bA(x(0)+Vmy)=r0AVmy=βv1Vm+1Hˉmy=Vm+1(βe1Hˉmy)
其中 r 0 = b − A x ( 0 ) , β = ∥ r 0 ∥ , v 1 = r 0 β \mathbf{r}_0=\mathbf{b}-\mathbf{A}\mathbf{x}^{(0)},\beta=\|\mathbf{r}_0\|,\mathbf{v}_1=\frac{\mathbf{r}_0}{\beta} r0=bAx(0),β=r0,v1=βr0

于是
min ⁡ x ∈ x ( 0 ) + K m ( A , r 0 ) ∥ A x − b ∥ = min ⁡ y ∈ R m ∥ r 0 − A V m y ∥ = min ⁡ y ∈ R m ∥ β e 1 − H ˉ m y ∥ \min\limits_{\mathbf{x}\in \mathbf{x}^{(0)}+\mathcal{K}_m\left(\mathbf{A},\mathbf{r}_0\right)}\|\mathbf{A}\mathbf{x}-\mathbf{b}\|=\min\limits_{\mathbf{y}\in\mathbb{R}^m}\|\mathbf{r}_0-\mathbf{A}\mathbf{V}_m\mathbf{y}\|=\min\limits_{\mathbf{y}\in\mathbb{R}^m} \|\beta\mathbf{e}_1-\bar{\mathbf{H}}_m\mathbf{y}\| xx(0)+Km(A,r0)minAxb=yRmminr0AVmy=yRmminβe1Hˉmy
在这里插入图片描述

Arnoldi-Householder

y m = ( η 1 ⋮ η m ) \mathbf{y}_m=\begin{pmatrix} \eta_1\\ \vdots\\ \eta_m \end{pmatrix} ym= η1ηm
x ( m ) = x ( 0 ) + η 1 v 1 + ⋯ + η m v m \mathbf{x}^{(m)}=\mathbf{x}^{(0)}+\eta_1\mathbf{v}_1+\cdots+\eta_m\mathbf{v}_m x(m)=x(0)+η1v1++ηmvm
因为
v j = P 1 ⋯ P j e j \mathbf{v}_j=\mathbf{P}_1\cdots\mathbf{P}_j\mathbf{e}_j vj=P1Pjej
所以
x ( m ) = x ( 0 ) + η 1 v 1 + ⋯ + η m v m = x ( 0 ) + η 1 P 1 e 1 + ⋯ + η m P 1 ⋯ P m e m = x ( 0 ) + P 1 ( η 1 e 1 + P 2 ( η 2 e 2 + ⋯ P m − 1 ( η m − 1 e m − 1 + P m η m e m ) ) ) \begin{aligned} \mathbf{x}^{(m)} &= \mathbf{x}^{(0)}+\eta_1\mathbf{v}_1+\cdots+\eta_m\mathbf{v}_m\\ &=\mathbf{x}^{(0)}+\eta_1\mathbf{P}_1\mathbf{e}_1+\cdots+\eta_m\mathbf{P}_1\cdots\mathbf{P}_m\mathbf{e}_m\\ &=\mathbf{x}^{(0)}+\mathbf{P}_1\left(\eta_1\mathbf{e}_1+\mathbf{P}_2\left(\eta_2\mathbf{e}_2+\cdots\mathbf{P}_{m-1}\left(\eta_{m-1}\mathbf{e}_{m-1}+\mathbf{P}_m\eta_m\mathbf{e}_m\right)\right)\right) \end{aligned} x(m)=x(0)+η1v1++ηmvm=x(0)+η1P1e1++ηmP1Pmem=x(0)+P1(η1e1+P2(η2e2+Pm1(ηm1em1+Pmηmem)))
最后就可以减小代价
在这里插入图片描述

进一步化简

使用Givens旋转变换,把Hessenberg矩阵 H ˉ m \bar{\mathbf{H}}_m Hˉm化成上三角矩阵加一行 0 0 0
Ω i \Omega_i Ωi为第 i i i个旋转矩阵
Q m = Ω m Ω m − 1 ⋯ Ω 1 R ˉ m = Q m H ˉ m g ˉ m = Q m ( β e 1 ) = ( γ 1 , ⋯   , γ m + 1 ) T \mathbf{Q}_m=\Omega_m\Omega_{m-1}\cdots\Omega_1\\ \bar{\mathbf{R}}_m=\mathbf{Q}_m\bar{\mathbf{H}}_m\\ \bar{\mathbf{g}}_m=\mathbf{Q}_m\left(\beta\mathbf{e}_1\right)=\left(\gamma_1,\cdots,\gamma_{m+1}\right)^T Qm=ΩmΩm1Ω1Rˉm=QmHˉmgˉm=Qm(βe1)=(γ1,,γm+1)T
于是
min ⁡ y ∈ R m ∥ β e 1 − H ˉ m y ∥ = min ⁡ y ∈ R m ∥ g ˉ m − R ˉ m y ∥ \min\limits_{\mathbf{y}\in\mathbb{R}^m} \|\beta\mathbf{e}_1-\bar{\mathbf{H}}_m\mathbf{y}\|=\min\limits_{\mathbf{y}\in\mathbb{R}^m} \|\bar{\mathbf{g}}_m-\bar{\mathbf{R}}_m\mathbf{y}\| yRmminβe1Hˉmy=yRmmingˉmRˉmy
R m \mathbf{R}_m Rm R ˉ m \bar{\mathbf{R}}_m Rˉm删掉最后一行, g m = ( γ 1 ⋮ γ m ) \mathbf{g}_m=\begin{pmatrix} \gamma_1\\ \vdots\\ \gamma_m \end{pmatrix} gm= γ1γm
∥ g ˉ m − R ˉ m y ∥ 2 = ∥ g m − R m y ∥ 2 + ∣ γ m + 1 ∣ 2 \begin{aligned} \|\bar{\mathbf{g}}_m-\bar{\mathbf{R}}_m\mathbf{y}\|^2 &= \|\mathbf{g}_m-\mathbf{R}_m\mathbf{y}\|^2+\left|\gamma_{m+1}\right|^2 \end{aligned} gˉmRˉmy2=gmRmy2+γm+12
A V m = V m + 1 H ˉ m = V m + 1 Q m T R ˉ m ⇒ rank ⁡ ( A V m ) = rank ⁡ ( R ˉ m ) \mathbf{A}\mathbf{V}_m=\mathbf{V}_{m+1}\bar{\mathbf{H}}_m=\mathbf{V}_{m+1}\mathbf{Q}_m^T\bar{\mathbf{R}}_m\Rightarrow\operatorname{rank}\left(\mathbf{A}\mathbf{V}_m\right)=\operatorname{rank}\left(\bar{\mathbf{R}}_m\right) AVm=Vm+1Hˉm=Vm+1QmTRˉmrank(AVm)=rank(Rˉm)
所以只要 r i i ≠ 0 r_{ii}\neq 0 rii=0, A V m \mathbf{A}\mathbf{V}_m AVm非奇异
因为 R m \mathbf{R}_m Rm是上三角矩阵,可以通过回代解, y m = R m − 1 g m \mathbf{y}_m=\mathbf{R}_m^{-1}\mathbf{g}_m ym=Rm1gm
min ⁡ y ∈ R m ∥ g ˉ m − R ˉ m y ∥ = ∣ γ m + 1 ∣ \min\limits_{\mathbf{y}\in\mathbb{R}^m} \|\bar{\mathbf{g}}_m-\bar{\mathbf{R}}_m\mathbf{y}\|=\left|\gamma_{m+1}\right| yRmmingˉmRˉmy=γm+1

重启

在这里插入图片描述

收敛性

假设 A \mathbf{A} A可对角化,即 A = X Λ X − 1 \mathbf{A}=\mathbf{X}\Lambda\mathbf{X}^{-1} A=XΛX1
其中 Λ = diag ⁡ ( λ 1 , ⋯   , λ n ) \Lambda=\operatorname{diag}\left(\lambda_1,\cdots,\lambda_n\right) Λ=diag(λ1,,λn) A \mathbf{A} A的特征值组成的对角矩阵

ϵ ( m ) = min ⁡ p ∈ P m , p ( 0 ) = 1 max ⁡ i = 1 , ⋯   , n ∣ p ( λ i ) ∣ \epsilon^{(m)}=\min_{p\in\mathbb{P}_m,p\left(0\right)=1}\max_{i=1,\cdots,n}\left|p\left(\lambda_i\right)\right| ϵ(m)=pPm,p(0)=1mini=1,,nmaxp(λi)

∥ r m ∥ ≤ κ 2 ( x ) ϵ ( m ) ∥ r 0 ∥ \|\mathbf{r}_m\|\le \kappa_2\left(\mathbf{x}\right)\epsilon^{(m)}\|\mathbf{r}_0\| rmκ2(x)ϵ(m)r0
证明:因为 x ∈ K m \mathbf{x}\in\mathcal{K}_m xKm,有 b − A x = p ( A ) r 0 \mathbf{b}-\mathbf{Ax}=p\left(\mathbf{A}\right)\mathbf{r}_0 bAx=p(A)r0
∥ b − A x ∥ = ∥ X p ( Λ ) X − 1 r 0 ∥ ≤ ∥ X ∥ 2 ∥ X − 1 ∥ 2 ∥ r 0 ∥ ∥ p ( Λ ) ∥ ≤ κ 2 ( X ) ϵ ( m ) ∥ r 0 ∥ \|\mathbf{b}-\mathbf{Ax}\|=\|\mathbf{X}p\left(\Lambda\right)\mathbf{X}^{-1}\mathbf{r}_0\|\le\|\mathbf{X}\|_2\|\mathbf{X}^{-1}\|_2\|\mathbf{r}_0\|\|p\left(\Lambda\right)\|\le\kappa_2\left(\mathbf{X}\right)\epsilon^{(m)}\|\mathbf{r}_0\| bAx=Xp(Λ)X1r0X2X12r0∥∥p(Λ)κ2(X)ϵ(m)r0

推论

假设 A \mathbf{A} A可对角化,即 A = X Λ X − 1 \mathbf{A}=\mathbf{X}\Lambda\mathbf{X}^{-1} A=XΛX1
其中 Λ = diag ⁡ ( λ 1 , ⋯   , λ n ) \Lambda=\operatorname{diag}\left(\lambda_1,\cdots,\lambda_n\right) Λ=diag(λ1,,λn) A \mathbf{A} A的特征值组成的对角矩阵
假设 A \mathbf{A} A的特征值落在椭圆 E ( c , d , a ) E\left(c,d,a\right) E(c,d,a)中( c c c为中心, d d d为焦距长, a a a为长半轴)

∥ r m ∥ ≤ κ 2 ( X ) C m ( a d ) ∣ C m ( c d ) ∣ ∥ r 0 ∥ \|\mathbf{r}_m\|\le \kappa_2\left(\mathbf{X}\right)\frac{C_m\left(\frac{a}{d}\right)}{\left|C_m\left(\frac{c}{d}\right)\right|}\|\mathbf{r}_0\| rmκ2(X) Cm(dc) Cm(da)r0
其中 C C C为切比雪夫多项式

证明:
摸了

参考

Iterative methods for sparse linear systems