zl程序教程

您现在的位置是:首页 >  其它

当前栏目

高等数学(第七版)同济大学 习题12-8 个人解答

12 个人 习题 解答 高等数学 同济大学 第七版
2023-09-14 09:06:59 时间

高等数学(第七版)同济大学 习题12-8

 

1.  将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): \begin{aligned}&1. \ 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式):&\end{aligned} 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式):

   ( 1 )    f ( x ) = 1 − x 2   ( − 1 2 ≤ x < 1 2 ) ;    ( 2 )    f ( x ) = { x , − 1 ≤ x < 0 , 1 , 0 ≤ x < 1 2 , − 1 , 1 2 ≤ x < 1 ;    ( 3 )    f ( x ) = { 2 x + 1 , − 3 ≤ x < 0 , 1 , 0 ≤ x < 3. \begin{aligned} &\ \ (1)\ \ f(x)=1-x^2\ \left(-\frac{1}{2} \le x \lt \frac{1}{2}\right);\\\\ &\ \ (2)\ \ f(x)=\begin{cases}x,-1 \le x \lt 0,\\\\1,0 \le x \lt \frac{1}{2},\\\\-1,\frac{1}{2}\le x \lt 1;\end{cases}\\\\ &\ \ (3)\ \ f(x)=\begin{cases}2x+1,-3 \le x \lt 0,\\\\1,0 \le x \lt 3.\end{cases} & \end{aligned}   (1)  f(x)=1x2 (21x<21)  (2)  f(x)= x1x<010x<21121x<1  (3)  f(x)= 2x+13x<010x<3.

解:

   ( 1 )  函数 f ( x ) 是半周期 l = 1 2 的偶函数,所以 b n = 0   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) , a 0 = 4 ∫ 0 1 2 ( 1 − x 2 ) d x = 11 6 ,          a n = 4 ∫ 0 1 2 ( 1 − x 2 ) c o s ( 2 n π x ) d x = 4 [ 1 − x 2 2 n π s i n ( 2 n π x ) − 2 x 4 n 2 π 2 c o s ( 2 n π x ) + 2 8 n 3 π 3 s i n ( 2 n π x ) ] 0 1 2 =          ( − 1 ) n + 1 n 2 π 2   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,因为 f ( x ) 满足收敛定理的条件且处处连续,         所以 f ( x ) = 11 12 + 1 π 2 ∑ n = 1 ∞ ( − 1 ) n + 1 n 2 c o s ( 2 n π x ) , x ∈ ( − ∞ ,   + ∞ ) .    ( 2 )  函数 f ( x ) 的半周期为 l = 1 , a 0 = ∫ − 1 1 f ( x ) d x = ∫ − 1 0 x d x + ∫ 0 1 2 d x + ∫ 1 2 1 ( − 1 ) d x = − 1 2 ,          a n = ∫ − 1 1 f ( x ) c o s ( n π x ) d x = ∫ − 1 0 x c o s ( n π x ) d x + ∫ 0 1 2 c o s ( n π x ) d x − ∫ 1 2 1 c o s ( n π x ) d x =          [ x n π s i n ( n π x ) + 1 n 2 π 2 c o s ( n π x ) ] − 1 0 + [ 1 n π s i n ( n π x ) ] 0 1 2 + [ 1 n π s i n ( n π x ) ] 1 1 2 =          1 n 2 π 2 [ 1 − ( − 1 ) n ] + 2 n π s i n n π 2   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,          b n = ∫ − 1 1 f ( x ) s i n ( n π x ) d x = ∫ − 1 0 x s i n ( n π x ) d x + ∫ 0 1 2 s i n ( n π x ) d x − ∫ 1 2 1 s i n ( n π x ) d x =          − 2 n π c o s n π 2 + 1 n π   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,因为 f ( x ) 满足收敛定理的条件,其间断点 x = 2 k , 2 k + 1 2 , k ∈ Z ,         所以 f ( x ) = − 1 4 + ∑ n = 1 ∞ { [ 1 − ( − 1 ) n n 2 π 2 + 2 n π s i n n π 2 ] c o s ( n π x ) + 1 n π ( 1 − 2 c o s n π 2 ) s i n ( n π x ) } ,          x ∈ R , { 2 k ,   2 k + 1 2   ∣   k ∈ Z }    ( 3 )  函数 f ( x ) 的半周期 l = 3 , a 0 = 1 3 ∫ − 3 3 f ( x ) d x = 1 3 [ ∫ − 3 0 ( 2 x + 1 ) d x + ∫ 0 3 d x ] = − 1 ,          a n = 1 3 ∫ − 3 3 f ( x ) c o s n π x 3 d x = 1 3 [ ∫ − 3 0 ( 2 x + 1 ) c o s n π x 3 d x + ∫ 0 3 c o s n π x 3 d x ] = 6 n 2 π 2 [ 1 − ( − 1 ) n ]   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,          b n = 1 3 ∫ − 3 3 f ( x ) s i n n π x 3 d x = 1 3 [ ∫ − 3 0 ( 2 x + 1 ) s i n n π x 3 d x + ∫ 0 3 s i n n π x 3 d x ] = 6 n π ( − 1 ) n + 1   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,         因为 f ( x ) 满足收敛定理的条件,其间断点为 x = 3 ( 2 k + 1 ) , k ∈ Z ,         所以 f ( x ) = − 1 2 + ∑ n = 1 ∞ { 6 n 2 π 2 [ 1 − ( − 1 ) n ] c o s n π x 3 + ( − 1 ) n + 1 6 n π s i n n π x 3 } , x ∈ R , { 3 ( 2 k + 1 )   ∣   k ∈ Z } . \begin{aligned} &\ \ (1)\ 函数f(x)是半周期l=\frac{1}{2}的偶函数,所以b_n=0\ (n=1,2,\cdot\cdot\cdot),a_0=4\int_{0}^{\frac{1}{2}}(1-x^2)dx=\frac{11}{6},\\\\ &\ \ \ \ \ \ \ \ a_n=4\int_{0}^{\frac{1}{2}}(1-x^2)cos(2n\pi x)dx=4\left[\frac{1-x^2}{2n\pi}sin(2n\pi x)-\frac{2x}{4n^2\pi^2}cos(2n\pi x)+\frac{2}{8n^3\pi^3}sin(2n\pi x)\right]_{0}^{\frac{1}{2}}=\\\\ &\ \ \ \ \ \ \ \ \frac{(-1)^{n+1}}{n^2\pi^2}\ (n=1,2,\cdot\cdot\cdot),因为f(x)满足收敛定理的条件且处处连续,\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=\frac{11}{12}+\frac{1}{\pi^2}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}cos(2n\pi x),x \in (-\infty, \ +\infty).\\\\ &\ \ (2)\ 函数f(x)的半周期为l=1,a_0=\int_{-1}^{1}f(x)dx=\int_{-1}^{0}xdx+\int_{0}^{\frac{1}{2}}dx+\int_{\frac{1}{2}}^{1}(-1)dx=-\frac{1}{2},\\\\ &\ \ \ \ \ \ \ \ a_n=\int_{-1}^{1}f(x)cos(n\pi x)dx=\int_{-1}^{0}xcos(n\pi x)dx+\int_{0}^{\frac{1}{2}}cos(n\pi x)dx-\int_{\frac{1}{2}}^{1}cos(n\pi x)dx=\\\\ &\ \ \ \ \ \ \ \ \left[\frac{x}{n\pi}sin(n\pi x)+\frac{1}{n^2\pi^2}cos(n\pi x)\right]_{-1}^{0}+\left[\frac{1}{n\pi}sin(n\pi x)\right]_{0}^{\frac{1}{2}}+\left[\frac{1}{n\pi}sin(n\pi x)\right]_{1}^{\frac{1}{2}}=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{n^2\pi^2}[1-(-1)^n]+\frac{2}{n\pi}sin\frac{n\pi}{2}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ b_n=\int_{-1}^{1}f(x)sin(n\pi x)dx=\int_{-1}^{0}xsin(n\pi x)dx+\int_{0}^{\frac{1}{2}}sin(n\pi x)dx-\int_{\frac{1}{2}}^{1}sin(n\pi x)dx=\\\\ &\ \ \ \ \ \ \ \ -\frac{2}{n\pi}cos\frac{n\pi}{2}+\frac{1}{n\pi}\ (n=1,2,\cdot\cdot\cdot),因为f(x)满足收敛定理的条件,其间断点x=2k,2k+\frac{1}{2},k \in Z,\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=-\frac{1}{4}+\sum_{n=1}^{\infty}\left\{\left[\frac{1-(-1)^n}{n^2\pi^2}+\frac{2}{n\pi}sin\frac{n\pi}{2}\right]cos(n\pi x)+\frac{1}{n\pi}\left(1-2cos\frac{n\pi}{2}\right)sin(n\pi x)\right\},\\\\ &\ \ \ \ \ \ \ \ x \in R,\left\{2k, \ 2k+\frac{1}{2}\ \bigg|\ k \in Z\right\}\\\\ &\ \ (3)\ 函数f(x)的半周期l=3,a_0=\frac{1}{3}\int_{-3}^{3}f(x)dx=\frac{1}{3}\left[\int_{-3}^{0}(2x+1)dx+\int_{0}^{3}dx\right]=-1,\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{1}{3}\int_{-3}^{3}f(x)cos\frac{n\pi x}{3}dx=\frac{1}{3}\left[\int_{-3}^{0}(2x+1)cos\frac{n\pi x}{3}dx+\int_{0}^{3}cos\frac{n\pi x}{3}dx\right]=\frac{6}{n^2\pi^2}[1-(-1)^n]\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{1}{3}\int_{-3}^{3}f(x)sin\frac{n\pi x}{3}dx=\frac{1}{3}\left[\int_{-3}^{0}(2x+1)sin\frac{n\pi x}{3}dx+\int_{0}^{3}sin\frac{n\pi x}{3}dx\right]=\frac{6}{n\pi}(-1)^{n+1}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ 因为f(x)满足收敛定理的条件,其间断点为x=3(2k+1),k \in Z,\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=-\frac{1}{2}+\sum_{n=1}^{\infty}\left\{\frac{6}{n^2\pi^2}[1-(-1)^n]cos\frac{n\pi x}{3}+(-1)^{n+1}\frac{6}{n\pi}sin\frac{n\pi x}{3}\right\},x \in R,\{3(2k+1)\ |\ k \in Z\}. & \end{aligned}   (1) 函数f(x)是半周期l=21的偶函数,所以bn=0 (n=12)a0=4021(1x2)dx=611        an=4021(1x2)cos(2x)dx=4[21x2sin(2x)4n2π22xcos(2x)+8n3π32sin(2x)]021=        n2π2(1)n+1 (n=12),因为f(x)满足收敛定理的条件且处处连续,        所以f(x)=1211+π21n=1n2(1)n+1cos(2x)x(, +).  (2) 函数f(x)的半周期为l=1a0=11f(x)dx=10xdx+021dx+211(1)dx=21        an=11f(x)cos(x)dx=10xcos(x)dx+021cos(x)dx211cos(x)dx=        [xsin(x)+n2π21cos(x)]10+[1sin(x)]021+[1sin(x)]121=        n2π21[1(1)n]+2sin2 (n=12)        bn=11f(x)sin(x)dx=10xsin(x)dx+021sin(x)dx211sin(x)dx=        2cos2+1 (n=12),因为f(x)满足收敛定理的条件,其间断点x=2k2k+21kZ        所以f(x)=41+n=1{[n2π21(1)n+2sin2]cos(x)+1(12cos2)sin(x)}        xR{2k, 2k+21   kZ}  (3) 函数f(x)的半周期l=3a0=3133f(x)dx=31[30(2x+1)dx+03dx]=1        an=3133f(x)cos3xdx=31[30(2x+1)cos3xdx+03cos3xdx]=n2π26[1(1)n] (n=12)        bn=3133f(x)sin3xdx=31[30(2x+1)sin3xdx+03sin3xdx]=6(1)n+1 (n=12)        因为f(x)满足收敛定理的条件,其间断点为x=3(2k+1)kZ        所以f(x)=21+n=1{n2π26[1(1)n]cos3x+(1)n+16sin3x}xR{3(2k+1)  kZ}.


2.  将下列函数分别展开成正弦级数和余弦级数: \begin{aligned}&2. \ 将下列函数分别展开成正弦级数和余弦级数:&\end{aligned} 2. 将下列函数分别展开成正弦级数和余弦级数:

   ( 1 )    f ( x ) = { x , 0 ≤ x < l 2 , l − x , l 2 ≤ x ≤ l . ;                          ( 2 )    f ( x ) = x 2   ( 0 ≤ x ≤ 2 ) \begin{aligned} &\ \ (1)\ \ f(x)=\begin{cases}x,0 \le x \lt \frac{l}{2},\\\\l-x,\frac{l}{2} \le x \le l.\end{cases};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ f(x)=x^2\ (0 \le x \le 2) & \end{aligned}   (1)  f(x)= x0x<2llx2lxl.                         (2)  f(x)=x2 (0x2)

解:

   ( 1 )  正弦级数:作 φ ( x ) 为 f ( x ) 的奇延拓,令 Φ ( x ) 是 φ ( x ) 的周期延拓,则 Φ ( x ) 是奇函数,周期为 2 l ,          Φ ( x ) 满足收敛定理的条件且处处连续,在 [ 0 ,   l ] 上, Φ ( x ) ≡ f ( x ) , a n = 0   ( n = 0 , 1 , 2 , ⋅ ⋅ ⋅ ) ,          b n = 2 l [ ∫ 0 l 2 x s i n n π x l d x + ∫ l 2 l ( l − x ) s i n n π x l d x ] ,上式的第二积分中令 l − x = t ,有          ∫ l 2 l ( l − x ) s i n n π x l d x = − ∫ 0 l 2 t c o s   n π s i n n π t l d t = ( − 1 ) n − 1 ∫ 0 l 2 t s i n n π t l d t ,则          b n = 2 l [ 1 + ( − 1 ) n − 1 ] ∫ 0 l 2 x s i n n π x l d x ,当 n = 2 k 时, b 2 k = 0 ,         当 n = 2 k − 1 时, b 2 k − 1 = 4 l ∫ 0 l 2 x s i n ( 2 k − 1 ) π x l d x = 4 l ( 2 k − 1 ) 2 π 2 ( − 1 ) k − 1   ( k = 1 , 2 , ⋅ ⋅ ⋅ ) ,         所以 f ( x ) = 4 l π 2 ∑ n = 1 ∞ ( − 1 ) k − 1 ( 2 k − 1 ) 2 s i n ( 2 k − 1 ) π x l , x ∈ [ 0 ,   l ] .         余弦级数:作 ψ ( x ) 为 f ( x ) 的偶延拓,令 Ψ ( x ) 是 ψ ( x ) 的周期延拓,则 Ψ ( x ) 是周期为 2 l 的周期函数,          Ψ ( x ) 满足收敛定理的条件且处处连续,在 [ 0 ,   l ] 上, Ψ ( x ) ≡ f ( x ) , a 0 = 2 l [ ∫ 0 l 2 x d x + ∫ l 2 l ( l − x ) d x ] = l 2 ,          a n = l 2 [ ∫ 0 l 2 x c o s n π x l d x + ∫ l 2 l ( l − x ) c o s n π x l d x ] ,上式第二积分中令 l − x = t ,有          ∫ l 2 l ( l − x ) c o s n π x l d x = ( − 1 ) n ∫ 0 l 2 t c o s n π t l d t ,则          a n = 2 l [ 1 + ( − 1 ) n ] ∫ 0 l 2 x c o s n π x l d x = 2 l [ 1 + ( − 1 ) n ] ( l π ) 2 ( π 2 n s i n n π 2 + 1 n 2 c o s n π 2 − 1 n 2 ) ,         当 n = 2 m − 1 时, a 2 m − 1 = 0 ,         当 n = 2 m 时, a 2 m = 4 l π 2 ⋅ 1 ( 2 m ) 2 [ ( − 1 ) m − 1 ] = { 0 , m = 2 k , l π 2 ⋅ − 2 ( 2 k − 1 ) 2 , m = 2 k − 1   ( k = 1 , 2 , ⋅ ⋅ ⋅ ) ,          f ( x ) = l 4 − 2 l π 2 ∑ k = 1 ∞ 1 ( 2 k − 1 ) 2 c o s 2 ( 2 k − 1 ) π x l , x ∈ [ 0 ,   l ]    ( 2 )  正弦级数:作 φ ( x ) 为 f ( x ) 的奇延拓,令 Φ ( x ) 是 φ ( x ) 的周期延拓,则 Φ ( x ) 是周期为 4 的周期函数,          Φ ( x ) 满足收敛定理的条件且除了间断点 x = 2 ( 2 k + 1 )   ( k ∈ Z ) 外处处连续,         在 [ 0 ,   2 ) 上, Φ ( x ) ≡ f ( x ) , a n = 0   ( n = 0 , 1 , 2 , ⋅ ⋅ ⋅ ) ,          b n = 2 2 ∫ 0 2 x 2 s i n n π x 2 d x = [ − 2 n π x 2 c o s n π x 2 ] 0 2 + 4 n π ∫ 0 2 x c o s n π x 2 d x =          ( − 1 ) n + 1 8 n π + 8 ( n π ) 2 [ x s i n n π x 2 ] 0 2 + 16 ( n π ) 3 [ c o s n π x 2 ] 0 2 = ( − 1 ) n + 1 8 n π + 16 ( n π ) 3 [ ( − 1 ) n − 1 ]   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,         所以 f ( x ) = 8 π ∑ n = 1 ∞ { ( − 1 ) n + 1 n + 2 n 3 π 2 [ ( − 1 ) n − 1 ] } s i n n π x 2 , x ∈ [ 0 ,   2 ) .         余弦级数:作 ψ ( x ) 为 f ( x ) 的偶延拓,令 Ψ ( x ) 是 ψ ( x ) 的周期延拓,则 Ψ ( x ) 是周期为 4 的周期函数,          Ψ ( x ) 满足收敛定理的条件且处处连续,在 [ 0 ,   2 ] 上, Ψ ( x ) ≡ f ( x ) , a 0 = 2 2 ∫ 0 2 x 2 d x = 8 3 ,          a n = 2 2 ∫ 0 2 x 2 c o s n π x 2 d x = 2 n π [ x 2 s i n n π x 2 ] 0 2 − 4 n π ∫ 0 2 x s i n n π x 2 d x = 8 ( n π ) 2 [ x c o s n π x 2 − 2 n π s i n n π x 2 ] 0 2 =          ( − 1 ) n 16 ( n π ) 2   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) , b n = 0   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,所以 f ( x ) = 4 3 + 16 π 2 ∑ n = 1 ∞ ( − 1 ) n n 2 c o s n π x 2 , x ∈ [ 0 ,   2 ] . \begin{aligned} &\ \ (1)\ 正弦级数:作\varphi(x)为f(x)的奇延拓,令\Phi(x)是\varphi(x)的周期延拓,则\Phi(x)是奇函数,周期为2l,\\\\ &\ \ \ \ \ \ \ \ \Phi(x)满足收敛定理的条件且处处连续,在[0, \ l]上,\Phi(x) \equiv f(x),a_n=0\ (n=0,1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{2}{l}\left[\int_{0}^{\frac{l}{2}}xsin\frac{n\pi x}{l}dx+\int_{\frac{l}{2}}^{l}(l-x)sin\frac{n\pi x}{l}dx\right],上式的第二积分中令l-x=t,有\\\\ &\ \ \ \ \ \ \ \ \int_{\frac{l}{2}}^{l}(l-x)sin\frac{n\pi x}{l}dx=-\int_{0}^{\frac{l}{2}}tcos\ n\pi sin\frac{n\pi t}{l}dt=(-1)^{n-1}\int_{0}^{\frac{l}{2}}tsin\frac{n\pi t}{l}dt,则\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{2}{l}[1+(-1)^{n-1}]\int_{0}^{\frac{l}{2}}xsin\frac{n\pi x}{l}dx,当n=2k时,b_{2k}=0,\\\\ &\ \ \ \ \ \ \ \ 当n=2k-1时,b_{2k-1}=\frac{4}{l}\int_{0}^{\frac{l}{2}}xsin\frac{(2k-1)\pi x}{l}dx=\frac{4l}{(2k-1)^2\pi^2}(-1)^{k-1}\ (k=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=\frac{4l}{\pi^2}\sum_{n=1}^{\infty}\frac{(-1)^{k-1}}{(2k-1)^2}sin\frac{(2k-1)\pi x}{l},x \in [0, \ l].\\\\ &\ \ \ \ \ \ \ \ 余弦级数:作\psi(x)为f(x)的偶延拓,令\Psi(x)是\psi(x)的周期延拓,则\Psi(x)是周期为2l的周期函数,\\\\ &\ \ \ \ \ \ \ \ \Psi(x)满足收敛定理的条件且处处连续,在[0, \ l]上,\Psi(x) \equiv f(x),a_0=\frac{2}{l}\left[\int_{0}^{\frac{l}{2}}xdx+\int_{\frac{l}{2}}^{l}(l-x)dx\right]=\frac{l}{2},\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{l}{2}\left[\int_{0}^{\frac{l}{2}}xcos\frac{n\pi x}{l}dx+\int_{\frac{l}{2}}^{l}(l-x)cos\frac{n\pi x}{l}dx\right],上式第二积分中令l-x=t,有\\\\ &\ \ \ \ \ \ \ \ \int_{\frac{l}{2}}^{l}(l-x)cos\frac{n\pi x}{l}dx=(-1)^n\int_{0}^{\frac{l}{2}}tcos\frac{n\pi t}{l}dt,则\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{2}{l}[1+(-1)^n]\int_{0}^{\frac{l}{2}}xcos\frac{n\pi x}{l}dx=\frac{2}{l}[1+(-1)^n]\left(\frac{l}{\pi}\right)^2\left(\frac{\pi}{2n}sin\frac{n\pi}{2}+\frac{1}{n^2}cos\frac{n\pi}{2}-\frac{1}{n^2}\right),\\\\ &\ \ \ \ \ \ \ \ 当n=2m-1时,a_{2m-1}=0,\\\\ &\ \ \ \ \ \ \ \ 当n=2m时,a_{2m}=\frac{4l}{\pi^2}\cdot\frac{1}{(2m)^2}[(-1)^m-1]=\begin{cases}0,m=2k,\\\\\frac{l}{\pi^2}\cdot\frac{-2}{(2k-1)^2},m=2k-1\end{cases}\ (k=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ f(x)=\frac{l}{4}-\frac{2l}{\pi^2}\sum_{k=1}^{\infty}\frac{1}{(2k-1)^2}cos\frac{2(2k-1)\pi x}{l},x \in [0, \ l]\\\\ &\ \ (2)\ 正弦级数:作\varphi(x)为f(x)的奇延拓,令\Phi(x)是\varphi(x)的周期延拓,则\Phi(x)是周期为4的周期函数,\\\\ &\ \ \ \ \ \ \ \ \Phi(x)满足收敛定理的条件且除了间断点x=2(2k+1)\ (k \in Z)外处处连续,\\\\ &\ \ \ \ \ \ \ \ 在[0, \ 2)上,\Phi(x) \equiv f(x),a_n=0\ (n=0,1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ b_n=\frac{2}{2}\int_{0}^{2}x^2sin\frac{n\pi x}{2}dx=\left[-\frac{2}{n\pi}x^2cos\frac{n\pi x}{2}\right]_{0}^{2}+\frac{4}{n\pi}\int_{0}^{2}xcos\frac{n\pi x}{2}dx=\\\\ &\ \ \ \ \ \ \ \ (-1)^{n+1}\frac{8}{n\pi}+\frac{8}{(n\pi)^2}\left[xsin\frac{n\pi x}{2}\right]_{0}^{2}+\frac{16}{(n\pi)^3}\left[cos\frac{n\pi x}{2}\right]_{0}^{2}=(-1)^{n+1}\frac{8}{n\pi}+\frac{16}{(n\pi)^3}[(-1)^n-1]\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ \ \ \ \ \ \ 所以f(x)=\frac{8}{\pi}\sum_{n=1}^{\infty}\left\{\frac{(-1)^{n+1}}{n}+\frac{2}{n^3\pi^2}[(-1)^n-1]\right\}sin\frac{n\pi x}{2},x \in [0, \ 2).\\\\ &\ \ \ \ \ \ \ \ 余弦级数:作\psi(x)为f(x)的偶延拓,令\Psi(x)是\psi(x)的周期延拓,则\Psi(x)是周期为4的周期函数,\\\\ &\ \ \ \ \ \ \ \ \Psi(x)满足收敛定理的条件且处处连续,在[0, \ 2]上,\Psi(x) \equiv f(x),a_0=\frac{2}{2}\int_{0}^{2}x^2dx=\frac{8}{3},\\\\ &\ \ \ \ \ \ \ \ a_n=\frac{2}{2}\int_{0}^{2}x^2cos\frac{n\pi x}{2}dx=\frac{2}{n\pi}\left[x^2sin\frac{n\pi x}{2}\right]_{0}^{2}-\frac{4}{n\pi}\int_{0}^{2}xsin\frac{n\pi x}{2}dx=\frac{8}{(n\pi)^2}\left[xcos\frac{n\pi x}{2}-\frac{2}{n\pi}sin\frac{n\pi x}{2}\right]_{0}^{2}=\\\\ &\ \ \ \ \ \ \ \ (-1)^n\frac{16}{(n\pi)^2}\ (n=1,2,\cdot\cdot\cdot),b_n=0\ (n=1,2,\cdot\cdot\cdot),所以f(x)=\frac{4}{3}+\frac{16}{\pi^2}\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}cos\frac{n\pi x}{2},x \in [0, \ 2]. & \end{aligned}   (1) 正弦级数:作φ(x)f(x)的奇延拓,令Φ(x)φ(x)的周期延拓,则Φ(x)是奇函数,周期为2l        Φ(x)满足收敛定理的条件且处处连续,在[0, l]上,Φ(x)f(x)an=0 (n=012)        bn=l2[02lxsinlxdx+2ll(lx)sinlxdx],上式的第二积分中令lx=t,有        2ll(lx)sinlxdx=02ltcos sinltdt=(1)n102ltsinltdt,则        bn=l2[1+(1)n1]02lxsinlxdx,当n=2k时,b2k=0        n=2k1时,b2k1=l402lxsinl(2k1)πxdx=(2k1)2π24l(1)k1 (k=12)        所以f(x)=π24ln=1(2k1)2(1)k1sinl(2k1)πxx[0, l].        余弦级数:作ψ(x)f(x)的偶延拓,令Ψ(x)ψ(x)的周期延拓,则Ψ(x)是周期为2l的周期函数,        Ψ(x)满足收敛定理的条件且处处连续,在[0, l]上,Ψ(x)f(x)a0=l2[02lxdx+2ll(lx)dx]=2l        an=2l[02lxcoslxdx+2ll(lx)coslxdx],上式第二积分中令lx=t,有        2ll(lx)coslxdx=(1)n02ltcosltdt,则        an=l2[1+(1)n]02lxcoslxdx=l2[1+(1)n](πl)2(2nπsin2+n21cos2n21)        n=2m1时,a2m1=0        n=2m时,a2m=π24l(2m)21[(1)m1]= 0m=2kπ2l(2k1)22m=2k1 (k=12)        f(x)=4lπ22lk=1(2k1)21cosl2(2k1)πxx[0, l]  (2) 正弦级数:作φ(x)f(x)的奇延拓,令Φ(x)φ(x)的周期延拓,则Φ(x)是周期为4的周期函数,        Φ(x)满足收敛定理的条件且除了间断点x=2(2k+1) (kZ)外处处连续,        [0, 2)上,Φ(x)f(x)an=0 (n=012)        bn=2202x2sin2xdx=[2x2cos2x]02+402xcos2xdx=        (1)n+18+()28[xsin2x]02+()316[cos2x]02=(1)n+18+()316[(1)n1] (n=12)        所以f(x)=π8n=1{n(1)n+1+n3π22[(1)n1]}sin2xx[0, 2).        余弦级数:作ψ(x)f(x)的偶延拓,令Ψ(x)ψ(x)的周期延拓,则Ψ(x)是周期为4的周期函数,        Ψ(x)满足收敛定理的条件且处处连续,在[0, 2]上,Ψ(x)f(x)a0=2202x2dx=38        an=2202x2cos2xdx=2[x2sin2x]02402xsin2xdx=()28[xcos2x2sin2x]02=        (1)n()216 (n=12)bn=0 (n=12),所以f(x)=34+π216n=1n2(1)ncos2xx[0, 2].


3.  设 f ( x ) 是周期为 2 的周期函数,它在 [ − 1 ,   1 ) 上的表达式为 f ( x ) = e − x ,试将 f ( x ) 展开成     复数形式的傅里叶级数 . \begin{aligned}&3. \ 设f(x)是周期为2的周期函数,它在[-1, \ 1)上的表达式为f(x)=e^{-x},试将f(x)展开成\\\\&\ \ \ \ 复数形式的傅里叶级数.&\end{aligned} 3. f(x)是周期为2的周期函数,它在[1, 1)上的表达式为f(x)=ex,试将f(x)展开成    复数形式的傅里叶级数.

解:

   f ( x ) 满足收敛定理的条件,且除了点 x = 2 k + 1   ( k ∈ Z ) 外处处连续,    c n = 1 2 ∫ − 1 1 e − x e − i n π x d x = 1 2 ∫ − 1 1 e − ( 1 + n π i ) x d x = − 1 2 ⋅ 1 1 + n π i [ e − ( 1 + n π i ) x ] − 1 1 = − 1 2 ⋅ 1 − n π i 1 + ( n π ) 2 ( e − 1 ⋅ e − n π i − e ⋅ e n π i ) =    1 − n π i 1 + ( n π ) 2 ⋅ e c o s   n π − e − 1 c o s   n π 2 = ( − 1 ) n e − e − 1 2 1 − n π i 1 + n 2 π 2   ( n = 0 , ± 1 , ± 2 , ⋅ ⋅ ⋅ ) ,   所以 f ( x ) = ∑ n = − ∞ ∞ ( − 1 ) n e − e − 1 2 1 − n π i 1 + n 2 π 2 ⋅ e i n π x , x ∈ R , { 2 k + 1   ∣   k ∈ Z } . \begin{aligned} &\ \ f(x)满足收敛定理的条件,且除了点x=2k+1\ (k \in Z)外处处连续,\\\\ &\ \ c_n=\frac{1}{2}\int_{-1}^{1}e^{-x}e^{-in\pi x}dx=\frac{1}{2}\int_{-1}^{1}e^{-(1+n\pi i)x}dx=-\frac{1}{2}\cdot\frac{1}{1+n\pi i}[e^{-(1+n\pi i)x}]_{-1}^{1}=-\frac{1}{2}\cdot\frac{1-n\pi i}{1+(n\pi)^2}(e^{-1}\cdot e^{-n\pi i}-e\cdot e^{n\pi i})=\\\\ &\ \ \frac{1-n\pi i}{1+(n\pi)^2}\cdot \frac{ecos\ n\pi-e^{-1}cos\ n\pi}{2}=(-1)^n\frac{e-e^{-1}}{2}\frac{1-n\pi i}{1+n^2\pi^2}\ (n=0,\pm1,\pm2,\cdot\cdot\cdot),\\\\ &\ \ 所以f(x)=\sum_{n=-\infty}^{\infty}(-1)^n\frac{e-e^{-1}}{2}\frac{1-n\pi i}{1+n^2\pi^2}\cdot e^{in\pi x},x \in R,\{2k+1\ |\ k \in Z\}. & \end{aligned}   f(x)满足收敛定理的条件,且除了点x=2k+1 (kZ)外处处连续,  cn=2111exeinπxdx=2111e(1+nπi)xdx=211+nπi1[e(1+nπi)x]11=211+()21nπi(e1enπieenπi)=  1+()21nπi2ecos e1cos =(1)n2ee11+n2π21nπi (n=0±1±2)  所以f(x)=n=(1)n2ee11+n2π21nπieinπxxR{2k+1  kZ}.


4.  设 u ( t ) 是周期为 T 的周期函数,已知它的傅里叶级数的复数形式为(参阅本节例题)      u ( t ) = h τ T + h π ∑ n = − ∞    n ≠ 0 ∞ 1 n s i n n π τ T e 2 n π t T i   ( − ∞ < t < + ∞ ) ,     试写出 u ( t ) 的傅里叶级数的实数形式(即三角形式) . \begin{aligned}&4. \ 设u(t)是周期为T的周期函数,已知它的傅里叶级数的复数形式为(参阅本节例题)\\\\&\ \ \ \ u(t)=\frac{h\tau}{T}+\frac{h}{\pi}\sum_{n=-\infty\ \ n \neq 0}^{\infty}\frac{1}{n}sin\frac{n\pi \tau}{T}e^{\frac{2n\pi t}{T}i}\ (-\infty \lt t \lt +\infty),\\\\&\ \ \ \ 试写出u(t)的傅里叶级数的实数形式(即三角形式).&\end{aligned} 4. u(t)是周期为T的周期函数,已知它的傅里叶级数的复数形式为(参阅本节例题)    u(t)=Thτ+πhn=  n=0n1sinTτeT2ti (<t<+)    试写出u(t)的傅里叶级数的实数形式(即三角形式).

解:

  已知 c n = h n π s i n n π τ T   ( n = ± 1 , ± 2 , ⋅ ⋅ ⋅ ) ,因为 c n = a n − i b n 2 , c − n = a n + i b n 2 = c n ‾   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,   则 a n = R e ( 2 c n ) , b n = I m ( 2 c n ‾ ) ,因 c n 为实数,所以 a n = 2 h n π s i n n π τ T , b n = 0   ( n = 1 , 2 , ⋅ ⋅ ⋅ ) ,   所以 u ( t ) = h τ T + 2 h π ∑ n = 1 ∞ 1 n s i n n π τ T ⋅ c o s 2 n π t T   ( − ∞ < t + ∞ ) . \begin{aligned} &\ \ 已知c_n=\frac{h}{n\pi}sin\frac{n\pi \tau}{T}\ (n=\pm1,\pm2,\cdot\cdot\cdot),因为c_n=\frac{a_n-ib_n}{2},c_{-n}=\frac{a_n+ib_n}{2}=\overline{c_n}\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ 则a_n=Re(2c_n),b_n=Im(2\overline{c_n}),因c_n为实数,所以a_n=\frac{2h}{n\pi}sin\frac{n\pi \tau}{T},b_n=0\ (n=1,2,\cdot\cdot\cdot),\\\\ &\ \ 所以u(t)=\frac{h\tau}{T}+\frac{2h}{\pi}\sum_{n=1}^{\infty}\frac{1}{n}sin\frac{n\pi \tau}{T}\cdot cos\frac{2n\pi t}{T}\ (-\infty \lt t +\infty). & \end{aligned}   已知cn=hsinTτ (n=±1±2),因为cn=2anibncn=2an+ibn=cn (n=12)  an=Re(2cn)bn=Im(2cn),因cn为实数,所以an=2hsinTτbn=0 (n=12)  所以u(t)=Thτ+π2hn=1n1sinTτcosT2t (<t+).