zl程序教程

您现在的位置是:首页 >  其它

当前栏目

高等数学(第七版)同济大学 总习题四(前半部分) 个人解答

个人 习题 解答 高等数学 同济大学 第七版
2023-09-14 09:06:57 时间

高等数学(第七版)同济大学 总习题四(前半部分)

 

1.  填空: \begin{aligned}&1. \ 填空:&\end{aligned} 1. 填空:

   ( 1 )    ∫ x 3 e x d x = _ _ _ _ _ _ _ _    ( 2 )    ∫ x + 5 x 2 − 6 x + 13 d x = _ _ _ _ _ _ _ _ \begin{aligned} &\ \ (1)\ \ \int x^3e^xdx=\_\_\_\_\_\_\_\_ \\\\ &\ \ (2)\ \ \int \frac{x+5}{x^2-6x+13}dx=\_\_\_\_\_\_\_\_ & \end{aligned}   (1)  x3exdx=________  (2)  x26x+13x+5dx=________

解:

   ( 1 )  设 u = x 3 , d v = e x d x ,则 d u = 3 x 2 d x , v = e x ,得           ∫ x 3 e x d x = x 3 e x − 3 ∫ x 2 e x d x ,设 u = x 2 , d v = e x d x ,则 d u = 2 x d x , v = e x ,得           ∫ x 3 e x d x = x 3 e x − 3 ∫ x 2 e x d x = x 3 e x − 3 ( x 2 e x − 2 ∫ x e x d x ) ,设 u = x , d v = e x d x ,           则 d u = d x , v = e x ,得 ∫ x 3 e x d x = x 3 e x − 3 ∫ x 2 e x d x = x 3 e x − 3 ( x 2 e x − 2 ∫ x e x d x ) =            x 3 e x − 3 ( x 2 e x − 2 ∫ x e x d x ) = x 3 e x − 3 x 2 e x + 6 x e x − 6 e x + C = e x ( x 3 − 3 x 2 + 6 x − 6 ) + C    ( 2 )   ∫ x + 5 x 2 − 6 x + 13 d x = ∫ x − 3 ( x − 3 ) 2 + 4 d ( x − 3 ) + 8 ∫ 1 ( x − 3 ) 2 + 4 d ( x − 3 ) ,根据积分表公式 23 和 19 ,得          ∫ x − 3 ( x − 3 ) 2 + 4 d ( x − 3 ) + 8 ∫ 1 ( x − 3 ) 2 + 4 d ( x − 3 ) = 1 2 l n ( x 2 − 6 x + 13 ) + 4 a r c t a n   x − 3 2 + C \begin{aligned} &\ \ (1)\ 设u=x^3,dv=e^xdx,则du=3x^2dx,v=e^x,得\\\\ &\ \ \ \ \ \ \ \ \ \int x^3e^xdx=x^3e^x-3\int x^2e^xdx,设u=x^2,dv=e^xdx,则du=2xdx,v=e^x,得\\\\ &\ \ \ \ \ \ \ \ \ \int x^3e^xdx=x^3e^x-3\int x^2e^xdx=x^3e^x-3(x^2e^x-2\int xe^xdx),设u=x,dv=e^xdx,\\\\ &\ \ \ \ \ \ \ \ \ \ 则du=dx,v=e^x,得\int x^3e^xdx=x^3e^x-3\int x^2e^xdx=x^3e^x-3(x^2e^x-2\int xe^xdx)=\\\\ &\ \ \ \ \ \ \ \ \ \ x^3e^x-3(x^2e^x-2\int xe^xdx)= x^3e^x-3x^2e^x+6xe^x-6e^x+C=e^x(x^3-3x^2+6x-6)+C\\\\ &\ \ (2)\ \int \frac{x+5}{x^2-6x+13}dx=\int \frac{x-3}{(x-3)^2+4}d(x-3)+8\int \frac{1}{(x-3)^2+4}d(x-3),根据积分表公式23和19,得\\\\ &\ \ \ \ \ \ \ \ \int \frac{x-3}{(x-3)^2+4}d(x-3)+8\int \frac{1}{(x-3)^2+4}d(x-3)=\frac{1}{2}ln(x^2-6x+13)+4arctan\ \frac{x-3}{2}+C & \end{aligned}   (1) u=x3dv=exdx,则du=3x2dxv=ex,得         x3exdx=x3ex3x2exdx,设u=x2dv=exdx,则du=2xdxv=ex,得         x3exdx=x3ex3x2exdx=x3ex3(x2ex2xexdx),设u=xdv=exdx          du=dxv=ex,得x3exdx=x3ex3x2exdx=x3ex3(x2ex2xexdx)=          x3ex3(x2ex2xexdx)=x3ex3x2ex+6xex6ex+C=ex(x33x2+6x6)+C  (2) x26x+13x+5dx=(x3)2+4x3d(x3)+8(x3)2+41d(x3),根据积分表公式2319,得        (x3)2+4x3d(x3)+8(x3)2+41d(x3)=21ln(x26x+13)+4arctan 2x3+C


2.  以下两题中给出了四个结论,从中选出一个正确的结论: \begin{aligned}&2. \ 以下两题中给出了四个结论,从中选出一个正确的结论:&\end{aligned} 2. 以下两题中给出了四个结论,从中选出一个正确的结论:

   ( 1 )  已知 f ′ ( x ) = 1 x ( 1 + 2 l n   x ) ,且 f ( 1 ) = 1 ,则 f ( x ) 等于 (      ) :    ( A )   l n ( 1 + 2 l n   x ) + 1                                          ( B )   1 2 l n ( 1 + 2 l n   x ) + 1    ( C )   1 2 l n ( 1 + 2 l n   x ) + 1 2                                      ( D )   2 l n ( 1 + 2 l n   x ) + 1    ( 2 )  在下列等式中,正确的结果是 (      ) .    ( A )   ∫ f ′ ( x ) d x = f ( x )                                         ( B )   ∫ d f ( x ) = f ( x )    ( C )   d d x ∫ f ( x ) d x = f ( x )                                     ( D )   d ∫ f ( x ) = f ( x ) \begin{aligned} &\ \ (1)\ 已知f'(x)=\frac{1}{x(1+2ln\ x)},且f(1)=1,则f(x)等于(\ \ \ \ ):\\\\ &\ \ (A)\ ln(1+2ln\ x)+1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (B)\ \frac{1}{2}ln(1+2ln\ x)+1\\\\ &\ \ (C)\ \frac{1}{2}ln(1+2ln\ x)+\frac{1}{2}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (D)\ 2ln(1+2ln\ x)+1\\\\ &\ \ (2)\ 在下列等式中,正确的结果是(\ \ \ \ ).\\\\ &\ \ (A)\ \int f'(x)dx=f(x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (B)\ \int df(x)=f(x)\\\\ &\ \ (C)\ \frac{d}{dx}\int f(x)dx=f(x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (D)\ d\int f(x)=f(x) & \end{aligned}   (1) 已知f(x)=x(1+2ln x)1,且f(1)=1,则f(x)等于(    )  (A) ln(1+2ln x)+1                                        (B) 21ln(1+2ln x)+1  (C) 21ln(1+2ln x)+21                                    (D) 2ln(1+2ln x)+1  (2) 在下列等式中,正确的结果是(    ).  (A) f(x)dx=f(x)                                       (B) df(x)=f(x)  (C) dxdf(x)dx=f(x)                                   (D) df(x)=f(x)

解:

   ( 1 )  求 ∫ 1 x ( 1 + 2 l n   x ) d x ,设 u = l n   x ,则 x = e u , d x = e u d u ,得              ∫ 1 x ( 1 + 2 l n   x ) d x = ∫ e u e u + 2 u e u d u = 1 2 ∫ 1 1 + 2 u d ( 1 + 2 u ) = 1 2 l n   ∣ 1 + 2 l n   x ∣ + C ,             因为 f ( 1 ) = 1 ,确定 C = 1 ,选 B    ( 2 )   ∫ d f ( x ) = ∫ f ′ ( x ) d x = f ( x ) + C , d d x ∫ f ( x ) d x = f ( x ) ,           d ∫ f ( x ) d x = ( d d x ∫ f ( x ) d x ) d x = f ( x ) d x ,所以选 C \begin{aligned} &\ \ (1)\ 求\int \frac{1}{x(1+2ln\ x)}dx,设u=ln\ x,则x=e^u,dx=e^udu,得\\\\ &\ \ \ \ \ \ \ \ \ \ \ \ \int \frac{1}{x(1+2ln\ x)}dx=\int \frac{e^u}{e^u+2ue^u}du=\frac{1}{2}\int \frac{1}{1+2u}d(1+2u)=\frac{1}{2}ln\ |1+2ln\ x|+C,\\\\ &\ \ \ \ \ \ \ \ \ \ \ \ 因为f(1)=1,确定C=1,选B\\\\ &\ \ (2)\ \int df(x)=\int f'(x)dx=f(x)+C,\frac{d}{dx}\int f(x)dx=f(x),\\\\ &\ \ \ \ \ \ \ \ \ d\int f(x)dx=\left(\frac{d}{dx}\int f(x)dx\right)dx=f(x)dx,所以选C & \end{aligned}   (1) x(1+2ln x)1dx,设u=ln x,则x=eudx=eudu,得            x(1+2ln x)1dx=eu+2ueueudu=211+2u1d(1+2u)=21ln ∣1+2ln x+C            因为f(1)=1,确定C=1,选B  (2) df(x)=f(x)dx=f(x)+Cdxdf(x)dx=f(x)         df(x)dx=(dxdf(x)dx)dx=f(x)dx,所以选C


3.  已知 s i n   x x 是 f ( x ) 的一个原函数,求 ∫ x 3 f ′ ( x ) d x . \begin{aligned}&3. \ 已知\frac{sin\ x}{x}是f(x)的一个原函数,求\int x^3f'(x)dx.&\end{aligned} 3. 已知xsin xf(x)的一个原函数,求x3f(x)dx.

解:

  设 F ( x ) = s i n   x x ,则 f ( x ) = F ′ ( x ) = ( s i n   x x ) ′ = x c o s   x − s i n   x x 2 = c o s   x x − s i n   x x 2 ,   则 f ′ ( x ) = − x s i n   x − c o s   x x 2 − x 2 c o s   x − 2 x s i n   x x 4 = − ( x 2 − 2 ) s i n   x + 2 x c o s   x x 3 ,    ∫ x 3 f ′ ( x ) d x = − ∫ ( ( x 2 − 2 ) s i n   x + 2 x c o s   x ) d x = − ∫ x 2 s i n   x d x + 2 ∫ s i n   x d x − 2 ∫ x c o s   x d x =    x 2 c o s   x − 2 ∫ x c o s   x d x − 2 c o s   x − 2 ∫ x c o s   x d x = x 2 c o s   x − 2 c o s   x − 4 ∫ x c o s   x d x =    x 2 c o s   x − 2 c o s   x − 4 x s i n   x − 4 c o s   x + C = x 2 c o s   x − 6 c o s   x − 4 x s i n   x + C \begin{aligned} &\ \ 设F(x)=\frac{sin\ x}{x},则f(x)=F'(x)=\left(\frac{sin\ x}{x}\right)'=\frac{xcos\ x-sin\ x}{x^2}=\frac{cos\ x}{x}-\frac{sin\ x}{x^2},\\\\ &\ \ 则f'(x)=\frac{-xsin\ x-cos\ x}{x^2}-\frac{x^2cos\ x-2xsin\ x}{x^4}=-\frac{(x^2-2)sin\ x+2xcos\ x}{x^3},\\\\ &\ \ \int x^3f'(x)dx=-\int ((x^2-2)sin\ x+2xcos\ x)dx=-\int x^2sin\ xdx+2\int sin\ xdx-2\int xcos\ xdx=\\\\ &\ \ x^2cos\ x-2\int xcos\ xdx-2cos\ x-2\int xcos\ xdx=x^2cos\ x-2cos\ x-4\int xcos\ xdx=\\\\ &\ \ x^2cos\ x-2cos\ x-4xsin\ x-4cos\ x+C=x^2cos\ x-6cos\ x-4xsin\ x+C & \end{aligned}   F(x)=xsin x,则f(x)=F(x)=(xsin x)=x2xcos xsin x=xcos xx2sin x  f(x)=x2xsin xcos xx4x2cos x2xsin x=x3(x22)sin x+2xcos x  x3f(x)dx=((x22)sin x+2xcos x)dx=x2sin xdx+2sin xdx2xcos xdx=  x2cos x2xcos xdx2cos x2xcos xdx=x2cos x2cos x4xcos xdx=  x2cos x2cos x4xsin x4cos x+C=x2cos x6cos x4xsin x+C


4.  求下列不定积分(其中 a , b 为常数): \begin{aligned}&4. \ 求下列不定积分(其中a,b为常数):&\end{aligned} 4. 求下列不定积分(其中ab为常数):

   ( 1 )    ∫ d x e x − e − x ;                                    ( 2 )    ∫ x ( 1 − x ) 3 d x ;    ( 3 )    ∫ x 2 a 6 − x 6 d x   ( a > 0 ) ;                    ( 4 )    ∫ 1 + c o s   x x + s i n   x d x ;    ( 5 )    ∫ l n   l n   x x d x ;                                  ( 6 )    ∫ s i n   x c o s   x 1 + s i n 4   x d x ;    ( 7 )    ∫ t a n 4   x d x ;                                    ( 8 )    ∫ s i n   x s i n   2 x s i n   3 x d x ;    ( 9 )    ∫ d x x ( x 6 + 4 ) ;                                  ( 10 )    ∫ a + x a − x d x   ( a > 0 ) ;    ( 11 )    ∫ d x x ( 1 + x ) ;                              ( 12 )    ∫ x c o s 2   x d x ;    ( 13 )    ∫ e a x c o s   b x d x ;                             ( 14 )    ∫ d x 1 + e x ;      ( 15 )    ∫ d x x 2 x 2 − 1 ;                              ( 16 )    ∫ d x ( a 2 − x 2 ) 5 2 ;    ( 17 )    ∫ d x x 4 1 + x 2 ;                              ( 18 )    ∫ x s i n   x d x ;    ( 19 )    ∫ l n ( 1 + x 2 ) d x ;                           ( 20 )    ∫ s i n 2   x c o s 3   x d x ;    ( 21 )    ∫ a r c t a n   x d x ;                           ( 22 )    ∫ 1 + c o s   x s i n   x d x ;    ( 23 )    ∫ x 3 ( 1 + x 8 ) 2 d x ;                             ( 24 )    ∫ x 11 x 8 + 3 x 4 + 2 d x ;    ( 25 )   ∫ d x 16 − x 4 ;                                     ( 26 )    ∫ s i n   x 1 + s i n   x d x ;    ( 27 )    ∫ x + s i n   x 1 + c o s   x d x ;                             ( 28 )    ∫ e s i n   x x c o s 3   x − s i n   x c o s 2   x d x ;    ( 29 )    ∫ x 3 x ( x + x 3 ) d x ;                        ( 30 )    ∫ d x ( 1 + e x ) 2 ;    ( 31 )   ∫ e 3 x + e x e 4 x − e 2 x + 1 d x ;                         ( 32 )    ∫ x e x ( e x + 1 ) 2 d x ;    ( 33 )    ∫ l n 2 ( x + 1 + x 2 ) d x ;                 ( 34 )    ∫ l n   x ( 1 + x 2 ) 3 2 d x ;    ( 35 )    ∫ 1 − x 2 a r c s i n   x d x ;                  ( 36 )    ∫ x 3 a r c c o s   x 1 − x 2 d x ;    ( 37 )    ∫ c o t   x 1 + s i n   x d x ;                               ( 38 )    ∫ d x s i n 3   x c o s   x ;    ( 39 )    ∫ d x ( 2 + c o s   x ) s i n   x ;                        ( 40 )    ∫ s i n   x c o s   x s i n   x + c o s   x d x \begin{aligned} &\ \ (1)\ \ \int \frac{dx}{e^x-e^{-x}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \int \frac{x}{(1-x)^3}dx;\\\\ &\ \ (3)\ \ \int \frac{x^2}{a^6-x^6}dx\ (a \gt 0);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \int \frac{1+cos\ x}{x+sin\ x}dx;\\\\ &\ \ (5)\ \ \int \frac{ln\ ln\ x}{x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \int \frac{sin\ xcos\ x}{1+sin^4\ x}dx;\\\\ &\ \ (7)\ \ \int tan^4\ xdx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \int sin\ xsin\ 2xsin\ 3xdx;\\\\ &\ \ (9)\ \ \int \frac{dx}{x(x^6+4)};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ \int \sqrt{\frac{a+x}{a-x}}dx\ (a \gt 0);\\\\ &\ \ (11)\ \ \int \frac{dx}{\sqrt{x(1+x)}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (12)\ \ \int xcos^2\ xdx;\\\\ &\ \ (13)\ \ \int e^{ax}cos\ bxdx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (14)\ \ \int \frac{dx}{\sqrt{1+e^x}};\\\\\ &\ \ (15)\ \ \int \frac{dx}{x^2\sqrt{x^2-1}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (16)\ \ \int \frac{dx}{(a^2-x^2)^{\frac{5}{2}}};\\\\ &\ \ (17)\ \ \int \frac{dx}{x^4\sqrt{1+x^2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (18)\ \ \int \sqrt{x}sin\ \sqrt{x}dx;\\\\ &\ \ (19)\ \ \int ln(1+x^2)dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (20)\ \ \int \frac{sin^2\ x}{cos^3\ x}dx;\\\\ &\ \ (21)\ \ \int arctan\ \sqrt{x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (22)\ \ \int \frac{\sqrt{1+cos\ x}}{sin\ x}dx;\\\\ &\ \ (23)\ \ \int \frac{x^3}{(1+x^8)^2}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (24)\ \ \int \frac{x^{11}}{x^8+3x^4+2}dx;\\\\ &\ \ (25)\ \int \frac{dx}{16-x^4};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (26)\ \ \int \frac{sin\ x}{1+sin\ x}dx;\\\\ &\ \ (27)\ \ \int \frac{x+sin\ x}{1+cos\ x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (28)\ \ \int e^{sin\ x}\frac{xcos^3\ x-sin\ x}{cos^2\ x}dx;\\\\ &\ \ (29)\ \ \int \frac{\sqrt[3]{x}}{x(\sqrt{x}+\sqrt[3]{x})}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (30)\ \ \int \frac{dx}{(1+e^x)^2};\\\\ &\ \ (31)\ \int \frac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (32)\ \ \int \frac{xe^x}{(e^x+1)^2}dx;\\\\ &\ \ (33)\ \ \int ln^2(x+\sqrt{1+x^2})dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (34)\ \ \int \frac{ln\ x}{(1+x^2)^{\frac{3}{2}}}dx;\\\\ &\ \ (35)\ \ \int \sqrt{1-x^2}arcsin\ xdx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (36)\ \ \int \frac{x^3arccos\ x}{\sqrt{1-x^2}}dx;\\\\ &\ \ (37)\ \ \int \frac{cot\ x}{1+sin\ x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (38)\ \ \int \frac{dx}{sin^3\ xcos\ x};\\\\ &\ \ (39)\ \ \int \frac{dx}{(2+cos\ x)sin\ x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (40)\ \ \int \frac{sin\ xcos\ x}{sin\ x+cos\ x}dx & \end{aligned}    (1)  exexdx                                   (2)  (1x)3xdx  (3)  a6x6x2dx (a>0)                   (4)  x+sin x1+cos xdx  (5)  xln ln xdx                                 (6)  1+sin4 xsin xcos xdx  (7)  tan4 xdx                                   (8)  sin xsin 2xsin 3xdx  (9)  x(x6+4)dx                                 (10)  axa+x dx (a>0)  (11)  x(1+x) dx                             (12)  xcos2 xdx  (13)  eaxcos bxdx                            (14)  1+ex dx  (15)  x2x21 dx                             (16)  (a2x2)25dx  (17)  x41+x2 dx                             (18)  x sin x dx  (19)  ln(1+x2)dx                          (20)  cos3 xsin2 xdx  (21)  arctan x dx                          (22)  sin x1+cos x dx  (23)  (1+x8)2x3dx                            (24)  x8+3x4+2x11dx  (25) 16x4dx                                    (26)  1+sin xsin xdx  (27)  1+cos xx+sin xdx                            (28)  esin xcos2 xxcos3 xsin xdx  (29)  x(x +3x )3x dx                       (30)  (1+ex)2dx  (31) e4xe2x+1e3x+exdx                        (32)  (ex+1)2xexdx  (33)  ln2(x+1+x2 )dx                (34)  (1+x2)23ln xdx  (35)  1x2 arcsin xdx                 (36)  1x2 x3arccos xdx  (37)  1+sin xcot xdx                              (38)  sin3 xcos xdx  (39)  (2+cos x)sin xdx                       (40)  sin x+cos xsin xcos xdx

解:

   ( 1 )   ∫ d x e x − e − x = ∫ e x e 2 x − 1 d x ,设 u = e x ,则 x = l n   u , d x = 1 u d u ,得          ∫ e x e 2 x − 1 d x = ∫ 1 u 2 − 1 d u = ∫ 1 ( u + 1 ) ( u − 1 ) d u = 2 ∫ 1 u − 1 d u − 2 ∫ 1 u + 1 d u =          2 l n   ∣ u − 1 ∣ − 2 l n   ∣ u + 1 ∣ + C = 2 l n   ∣ e x − 1 ∣ e x + 1 + C    ( 2 )  设 u = 1 − x ,则 x = 1 − u , d x = − d u ,得          ∫ x ( 1 − x ) 3 d x = ∫ u − 1 u 3 d u = ∫ 1 u 2 d u − ∫ 1 u 3 d u = − 1 u + 1 2 u 2 + C = 2 x − 1 2 x 2 − 4 x + 2 + C    ( 3 )   ∫ x 2 a 6 − x 6 d x = ∫ x 2 ( a 3 ) 2 − ( x 3 ) 2 d x ,设 u = x 3 ,则 x = x 3 , d x = 1 3 x 2 3 ,得          ∫ x 2 ( a 3 ) 2 − ( x 3 ) 2 d x = ∫ u 2 3 ( a 3 ) 2 − u 2 ⋅ 1 3 x 2 3 d u = − 1 3 ∫ 1 u 2 − ( a 3 ) 2 d u = − 1 3 ( 1 2 a 3 l n   ∣ u − a 3 u + a 3 ∣ + C ) =            − 1 6 a 3 l n   ∣ x 3 − a 3 x 3 + a 3 ∣ + C    ( 4 )   ∫ 1 + c o s   x x + s i n   x d x = ∫ 1 x + s i n   x d ( x + s i n   x ) = l n   ∣ x + s i n   x ∣ + C    ( 5 )  设 u = l n   x ,则 x = e u , d x = e u d u ,得 ∫ l n   l n   x x d x = ∫ l n   u d u ,设 t = l n   u ,则 u = e t , d u = e t d t ,得          ∫ l n   u d u = ∫ t e t d t ,设 s = t , d v = e t d t ,则 d s = d t , v = e t ,得          ∫ t e t d t = t e t − e t + C = e t ( t − 1 ) + C = u ( l n   u − 1 ) + C = l n   x ( l n   l n   x − 1 ) + C    ( 6 )  设 u = s i n   x ,则 x = a r c s i n   u , d x = 1 1 − u 2 d u ,得          ∫ s i n   x c o s   x 1 + s i n 4   x d x = ∫ u 1 − u 2 1 + u 4 ⋅ 1 1 − u 2 d u = ∫ u 1 + u 4 d u = 1 2 ∫ 1 1 + ( u 2 ) 2 d ( u 2 ) = 1 2 a r c t a n ( s i n 2   x ) + C    ( 7 )   ∫ t a n 4   x d x = ∫ t a n 2   x ( s e c 2   x − 1 ) d x = ∫ t a n 2   x s e c 2   x d x − ∫ ( s e c 2   x − 1 ) d x =          ∫ t a n 2   x d ( t a n   x ) − t a n   x + x = 1 3 t a n 3   x − t a n   x + x + C    ( 8 )   ∫ s i n   x s i n   2 x s i n   3 x d x = ∫ s i n   x ⋅ 2 s i n   x c o s   x ⋅ ( 3 s i n   x − 4 s i n 3   x ) d x = ∫ ( 6 s i n 3   x − 8 s i n 5   x ) c o s   x d x ,         设 u = s i n   x ,则 x = a r c s i n   u , d x = 1 1 − u 2 d u ,得          ∫ ( 6 s i n 3   x − 8 s i n 5   x ) c o s   x d x = ∫ ( 6 u 3 − 8 u 5 ) d u = 6 ∫ u 3 d u − 8 ∫ u 5 d u =          3 2 u 4 − 4 3 u 6 + C = 3 2 s i n 4   x − 4 3 s i n 6   x + C    ( 9 )  设 u = x 3 ,则 x = x 3 , d x = 1 3 u 2 3 d u ,得          ∫ d x x ( x 6 + 4 ) = 1 3 ∫ 1 u ( u 2 + 4 ) d u ,设 t = u 2 + 4 ,则 u = t − 4 , d u = 1 2 t − 4 d t ,得          1 3 ∫ 1 u ( u 2 + 4 ) d u = 1 6 ∫ 1 t ( t − 4 ) d t = 1 24 ∫ ( 1 t − 4 − 1 t ) d t = 1 24 ∫ 1 t − 4 d ( t − 4 ) − 1 24 ∫ 1 t d t =          1 24 l n   ∣ t − 4 ∣ − 1 24 l n   ∣ t ∣ + C = 1 4 l n   ∣ x ∣ − 1 24 l n ( x 6 + 4 ) + C    ( 10 )   ∫ a + x a − x d x = ∫ a + x a 2 − x 2 d x = a ∫ 1 a 2 − x 2 d x + ∫ x a 2 − x 2 d x =            a a r c s i n   x a − 1 2 ∫ 1 a 2 − x 2 d ( a 2 − x 2 ) = a a r c s i n   x a − a 2 − x 2 + C    ( 11 )  设 u = x ( 1 + x ) ,则 x = u 2 + 1 4 − 1 2 , d x = u u 2 + 1 4 d u ,得           ∫ d x x ( 1 + x ) = ∫ 1 u 2 + 1 4 d u = l n   ∣ u + u 2 + 1 4 ∣ + C = l n   ∣ 2 x ( 1 + x ) + 2 x + 1 ∣ + C    ( 12 )   ∫ x c o s 2   x d x = 1 2 ∫ ( x + x c o s   2 x ) d x = 1 2 ∫ x d x + 1 4 ∫ x c o s   2 x d ( 2 x ) =            1 4 x 2 + 1 4 ( x s i n   2 x − 1 2 ∫ s i n   2 x d ( 2 x ) ) = 1 4 x 2 + 1 4 x s i n   2 x + 1 8 c o s   2 x + C    ( 13 )  当 a ≠ 0 时, ∫ e a x c o s   b x d x = 1 b ∫ e a x c o s   b x d ( b x ) ,设 u = e a x , d v = c o s   b x d ( b x ) ,            则 d u = a e a x d x , v = s i n   b x ,得             1 b ∫ e a x c o s   b x d ( b x ) = 1 b e a x s i n   b x − a b 2 ∫ e a x s i n   b x d ( b x ) ,设 u = e a x , d v = s i n   b x d ( b x ) ,            则 d u = a e a x d x , v = − c o s   b x ,得             1 b e a x s i n   b x − a b 2 ∫ e a x s i n   b x d ( b x ) = 1 b e a x s i n   b x + a b 2 e a x c o s   b x − a 2 b 2 ∫ e a x c o s   b x d x ,得             ∫ e a x c o s   b x d x = e a x a 2 + b 2 ( b s i n   b x + a c o s   b x ) + C            当 a = 0 时, ∫ e a x c o s   b x d x = { s i n   b x b + C , b ≠ 0 , x + C , b = 0    ( 14 )  设 u = 1 + e x ,则 x = l n ( u 2 − 1 ) , d x = 2 u u 2 − 1 d u ,得             ∫ d x 1 + e x = 2 ∫ 1 u 2 − 1 d u = l n   ∣ u − a u + a ∣ + C = l n   1 + e x − 1 1 + e x + 1 + C    ( 15 )  令 x = s e c   u ,则 x = a r c c o s   1 x , d x = s e c   u t a n   u d u ,得             ∫ d x x 2 x 2 − 1 = ∫ s e c   u t a n   u s e c 2   u t a n   u d u = ∫ c o s   u d u = s i n   u + C = s i n ( a r c c o s   1 x ) + C = x 2 − 1 x + C    ( 16 )  设 x = a s i n   u   ( − π 2 < u < π 2 ) ,则 a 2 − x 2 = a c o s   u , d x = a c o s   u d u ,得            ∫ d x ( a 2 − x 2 ) 5 2 = 1 a 4 ∫ s e c 4   u d u = 1 a 4 ∫ ( t a n 2   u + 1 ) d ( t a n   u ) = 1 3 a 4 t a n 3   u + 1 a 4 t a n   u + C =            1 3 a 4 [ x 3 ( a 2 − x 2 ) 3 + 3 x a 2 − x 2 ] + C    ( 17 )  设 x = t a n   u ,则 u = a r c t a n   x , d x = s e c 2   u d u ,得            ∫ d x x 4 1 + x 2 = ∫ s e c 2   u d u t a n 4   u 1 + t a n 2   u = ∫ s e c   u d u t a n 4   u = ∫ c o t 3   u c s c   u d u = − ∫ c o t 2   u ( − c s c   u c o t   u ) d u ,           令 s = c o t 2   u , d v = − c s c   u c o t   u d u ,则 d s = − 2 c o t   u c s c 2   u d u , v = c s c   u ,得            − ∫ c o t 2   u ( − c s c   u c o t   u ) d u = − ( c s c   u c o t 2   u + 2 ∫ c s c 3   u c o t   u d u ) =            − ( c s c   u c o t 2   u − 2 ∫ c s c 2   u ( − c s c   u c o t   u ) d u ) = − ( c s c   u c o t 2   u − 2 ∫ c s c 2   u d ( c s c   u ) ) =             2 3 c s c 3   u − c s c   u c o t 2   u + C = 2 3 ( 1 + x 2 ) 3 x 3 − 1 + x 2 x 3 + C    ( 18 )  设 u = x ,则 x = u 2 , d x = 2 u d u ,得            ∫ x s i n   x d x = 2 ∫ u 2 s i n   u d u ,令 s = u 2 , d v = s i n   u d u , d s = 2 u d u , v = − c o s   u ,得            2 ∫ u 2 s i n   u d u = − 2 u 2 c o s   u + 4 ∫ u c o s   u d u ,令 s = u , d v = c o s   u d u , d s = d u , v = s i n   u ,得            − 2 u 2 c o s   u + 4 ∫ u c o s   u d u = − 2 u 2 c o s   u + 4 u s i n   u + 4 c o s   u + C = − 2 x c o s x + 4 x s i n x + 4 c o s x + C    ( 19 )  设 u = l n ( 1 + x 2 ) ,则 x = e u − 1 , d x = e u d u 2 e u − 1 ,得            ∫ l n ( 1 + x 2 ) d x = 1 2 ∫ u e u d u e u − 1 ,令 s = e u − 1 ,则 u = l n ( s + 1 ) , d u = 1 s + 1 d s ,得            1 2 ∫ u e u d u e u − 1 = 1 2 ∫ l n ( s + 1 ) s d s ,令 u = l n ( s + 1 ) , d v = 1 s d s ,则 d u = 1 s + 1 d s , v = 2 s ,得            1 2 ∫ l n ( s + 1 ) s d s = s l n ( s + 1 ) − ∫ s ( s ) 2 + 1 d s = s l n ( s + 1 ) − 1 2 l n ( s + 1 ) + C =            x l n ( x 2 + 1 ) − 1 2 l n ( x 2 + 1 ) + C \begin{aligned} &\ \ (1)\ \int \frac{dx}{e^x-e^{-x}}=\int \frac{e^x}{e^{2x}-1}dx,设u=e^x,则x=ln\ u,dx=\frac{1}{u}du,得\\\\ &\ \ \ \ \ \ \ \ \int \frac{e^x}{e^{2x}-1}dx=\int \frac{1}{u^2-1}du=\int \frac{1}{(u+1)(u-1)}du=2\int \frac{1}{u-1}du-2\int \frac{1}{u+1}du=\\\\ &\ \ \ \ \ \ \ \ 2ln\ |u-1|-2ln\ |u+1|+C=2ln\ \frac{|e^x-1|}{e^x+1}+C\\\\ &\ \ (2)\ 设u=1-x,则x=1-u,dx=-du,得\\\\ &\ \ \ \ \ \ \ \ \int \frac{x}{(1-x)^3}dx=\int \frac{u-1}{u^3}du=\int \frac{1}{u^2}du-\int \frac{1}{u^3}du=-\frac{1}{u}+\frac{1}{2u^2}+C=\frac{2x-1}{2x^2-4x+2}+C\\\\ &\ \ (3)\ \int \frac{x^2}{a^6-x^6}dx=\int \frac{x^2}{(a^3)^2-(x^3)^2}dx,设u=x^3,则x=\sqrt[3]{x},dx=\frac{1}{3\sqrt[3]{x^2}},得\\\\ &\ \ \ \ \ \ \ \ \int \frac{x^2}{(a^3)^2-(x^3)^2}dx=\int \frac{\sqrt[3]{u^2}}{(a^3)^2-u^2}\cdot \frac{1}{3\sqrt[3]{x^2}}du=-\frac{1}{3}\int \frac{1}{u^2-(a^3)^2}du=-\frac{1}{3}\left(\frac{1}{2a^3}ln\ \left|\frac{u-a^3}{u+a^3}\right|+C\right)=\\\\ &\ \ \ \ \ \ \ \ \ \ -\frac{1}{6a^3}ln\ \left|\frac{x^3-a^3}{x^3+a^3}\right|+C\\\\ &\ \ (4)\ \int \frac{1+cos\ x}{x+sin\ x}dx=\int \frac{1}{x+sin\ x}d(x+sin\ x)=ln\ |x+sin\ x|+C\\\\ &\ \ (5)\ 设u=ln\ x,则x=e^u,dx=e^udu,得\int \frac{ln\ ln\ x}{x}dx=\int ln\ udu,设t=ln\ u,则u=e^t,du=e^tdt,得\\\\ &\ \ \ \ \ \ \ \ \int ln\ udu=\int te^tdt,设s=t,dv=e^tdt,则ds=dt,v=e^t,得\\\\ &\ \ \ \ \ \ \ \ \int te^tdt=te^t-e^t+C=e^t(t-1)+C=u(ln\ u-1)+C=ln\ x(ln\ ln\ x-1)+C\\\\ &\ \ (6)\ 设u=sin\ x,则x=arcsin\ u,dx=\frac{1}{\sqrt{1-u^2}}du,得\\\\ &\ \ \ \ \ \ \ \ \int \frac{sin\ xcos\ x}{1+sin^4\ x}dx=\int \frac{u\sqrt{1-u^2}}{1+u^4}\cdot \frac{1}{\sqrt{1-u^2}}du=\int \frac{u}{1+u^4}du=\frac{1}{2}\int \frac{1}{1+(u^2)^2}d(u^2)=\frac{1}{2}arctan(sin^2\ x)+C\\\\ &\ \ (7)\ \int tan^4\ xdx=\int tan^2\ x(sec^2\ x-1)dx=\int tan^2\ xsec^2\ xdx-\int (sec^2\ x-1)dx=\\\\ &\ \ \ \ \ \ \ \ \int tan^2\ xd(tan\ x)-tan\ x+x=\frac{1}{3}tan^3\ x-tan\ x+x+C\\\\ &\ \ (8)\ \int sin\ xsin\ 2xsin\ 3xdx=\int sin\ x\cdot 2sin\ xcos\ x\cdot (3sin\ x-4sin^3\ x)dx=\int (6sin^3\ x-8sin^5\ x)cos\ xdx,\\\\ &\ \ \ \ \ \ \ \ 设u=sin\ x,则x=arcsin\ u,dx=\frac{1}{\sqrt{1-u^2}}du,得\\\\ &\ \ \ \ \ \ \ \ \int (6sin^3\ x-8sin^5\ x)cos\ xdx=\int (6u^3-8u^5)du=6\int u^3du-8\int u^5du=\\\\ &\ \ \ \ \ \ \ \ \frac{3}{2}u^4-\frac{4}{3}u^6+C=\frac{3}{2}sin^4\ x-\frac{4}{3}sin^6\ x+C\\\\ &\ \ (9)\ 设u=x^3,则x=\sqrt[3]{x},dx=\frac{1}{3\sqrt[3]{u^2}}du,得\\\\ &\ \ \ \ \ \ \ \ \int \frac{dx}{x(x^6+4)}=\frac{1}{3}\int \frac{1}{u(u^2+4)}du,设t=u^2+4,则u=\sqrt{t-4},du=\frac{1}{2\sqrt{t-4}}dt,得\\\\ &\ \ \ \ \ \ \ \ \frac{1}{3}\int \frac{1}{u(u^2+4)}du=\frac{1}{6}\int \frac{1}{t(t-4)}dt=\frac{1}{24}\int \left(\frac{1}{t-4}-\frac{1}{t}\right)dt=\frac{1}{24}\int \frac{1}{t-4}d(t-4)-\frac{1}{24}\int \frac{1}{t}dt=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{24}ln\ |t-4|-\frac{1}{24}ln\ |t|+C=\frac{1}{4}ln\ |x|-\frac{1}{24}ln(x^6+4)+C\\\\ &\ \ (10)\ \int \sqrt{\frac{a+x}{a-x}}dx=\int \frac{a+x}{\sqrt{a^2-x2}}dx=a\int \frac{1}{\sqrt{a^2-x^2}}dx+\int \frac{x}{\sqrt{a^2-x^2}}dx=\\\\ &\ \ \ \ \ \ \ \ \ \ aarcsin\ \frac{x}{a}-\frac{1}{2}\int \frac{1}{\sqrt{a^2-x^2}}d(a^2-x^2)=aarcsin\ \frac{x}{a}-\sqrt{a^2-x^2}+C\\\\ &\ \ (11)\ 设u=\sqrt{x(1+x)},则x=\sqrt{u^2+\frac{1}{4}}-\frac{1}{2},dx=\frac{u}{\sqrt{u^2+\frac{1}{4}}}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{\sqrt{x(1+x)}}=\int \frac{1}{\sqrt{u^2+\frac{1}{4}}}du=ln\ |u+\sqrt{u^2+\frac{1}{4}}|+C=ln\ |2\sqrt{x(1+x)}+2x+1|+C\\\\ &\ \ (12)\ \int xcos^2\ xdx=\frac{1}{2}\int (x+xcos\ 2x)dx=\frac{1}{2}\int xdx+\frac{1}{4}\int xcos\ 2xd(2x)=\\\\ &\ \ \ \ \ \ \ \ \ \ \frac{1}{4}x^2+\frac{1}{4}\left(xsin\ 2x-\frac{1}{2}\int sin\ 2xd(2x)\right)=\frac{1}{4}x^2+\frac{1}{4}xsin\ 2x+\frac{1}{8}cos\ 2x+C\\\\ &\ \ (13)\ 当a \neq 0时,\int e^{ax}cos\ bxdx=\frac{1}{b}\int e^{ax}cos\ bxd(bx),设u=e^{ax},dv=cos\ bxd(bx),\\\\ &\ \ \ \ \ \ \ \ \ \ \ 则du=ae^{ax}dx,v=sin\ bx,得\\\\ &\ \ \ \ \ \ \ \ \ \ \ \frac{1}{b}\int e^{ax}cos\ bxd(bx)=\frac{1}{b}e^{ax}sin\ bx-\frac{a}{b^2}\int e^{ax}sin\ bxd(bx),设u=e^{ax},dv=sin\ bxd(bx),\\\\ &\ \ \ \ \ \ \ \ \ \ \ 则du=ae^{ax}dx,v=-cos\ bx,得\\\\ &\ \ \ \ \ \ \ \ \ \ \ \frac{1}{b}e^{ax}sin\ bx-\frac{a}{b^2}\int e^{ax}sin\ bxd(bx)=\frac{1}{b}e^{ax}sin\ bx+\frac{a}{b^2}e^{ax}cos\ bx-\frac{a^2}{b^2}\int e^{ax}cos\ bxdx,得\\\\ &\ \ \ \ \ \ \ \ \ \ \ \int e^{ax}cos\ bxdx=\frac{e^{ax}}{a^2+b^2}(bsin\ bx+acos\ bx)+C\\\\ &\ \ \ \ \ \ \ \ \ \ \ 当a=0时,\int e^{ax}cos\ bxdx=\begin{cases}\frac{sin\ bx}{b}+C,b \neq 0,\\\\x+C,b=0\end{cases}\\\\ &\ \ (14)\ 设u=\sqrt{1+e^x},则x=ln(u^2-1),dx=\frac{2u}{u^2-1}du,得\\\\ &\ \ \ \ \ \ \ \ \ \ \ \int \frac{dx}{\sqrt{1+e^x}}=2\int \frac{1}{u^2-1}du=ln\ \left|\frac{u-a}{u+a}\right|+C=ln\ \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\\\\ &\ \ (15)\ 令x=sec\ u,则x=arccos\ \frac{1}{x},dx=sec\ utan\ udu,得\\\\ &\ \ \ \ \ \ \ \ \ \ \ \int \frac{dx}{x^2\sqrt{x^2-1}}=\int \frac{sec\ utan\ u}{sec^2\ utan\ u}du=\int cos\ udu=sin\ u+C=sin(arccos\ \frac{1}{x})+C=\frac{\sqrt{x^2-1}}{x}+C\\\\ &\ \ (16)\ 设x=asin\ u\ \left(-\frac{\pi}{2} \lt u \lt \frac{\pi}{2}\right),则\sqrt{a^2-x^2}=acos\ u,dx=acos\ udu,得\\\\ &\ \ \ \ \ \ \ \ \ \ \int \frac{dx}{(a^2-x^2)^{\frac{5}{2}}}=\frac{1}{a^4}\int sec^4\ udu=\frac{1}{a^4}\int (tan^2\ u+1)d(tan\ u)=\frac{1}{3a^4}tan^3\ u+\frac{1}{a^4}tan\ u+C=\\\\ &\ \ \ \ \ \ \ \ \ \ \frac{1}{3a^4}\left[\frac{x^3}{\sqrt{(a^2-x^2)^3}}+\frac{3x}{\sqrt{a^2-x^2}}\right]+C\\\\ &\ \ (17)\ 设x=tan\ u,则u=arctan\ x,dx=sec^2\ udu,得\\\\ &\ \ \ \ \ \ \ \ \ \ \int \frac{dx}{x^4\sqrt{1+x^2}}=\int \frac{sec^2\ udu}{tan^4\ u\sqrt{1+tan^2\ u}}=\int \frac{sec\ udu}{tan^4\ u}=\int cot^3\ ucsc\ udu=-\int cot^2\ u(-csc\ ucot\ u)du,\\\\ &\ \ \ \ \ \ \ \ \ \ 令s=cot^2\ u,dv=-csc\ ucot\ udu,则ds=-2cot\ ucsc^2\ udu,v=csc\ u,得\\\\ &\ \ \ \ \ \ \ \ \ \ -\int cot^2\ u(-csc\ ucot\ u)du=-(csc\ ucot^2\ u+2\int csc^3\ ucot\ udu)=\\\\ &\ \ \ \ \ \ \ \ \ \ -(csc\ ucot^2\ u-2\int csc^2\ u(-csc\ ucot\ u)du)=-(csc\ ucot^2\ u-2\int csc^2\ ud(csc\ u))=\\\\ &\ \ \ \ \ \ \ \ \ \ \ \frac{2}{3}csc^3\ u-csc\ ucot^2\ u+C=\frac{2}{3}\frac{\sqrt{(1+x^2)^3}}{x^3}-\frac{\sqrt{1+x^2}}{x^3}+C\\\\ &\ \ (18)\ 设u=\sqrt{x},则x=u^2,dx=2udu,得\\\\ &\ \ \ \ \ \ \ \ \ \ \int \sqrt{x}sin\ \sqrt{x}dx=2\int u^2sin\ udu,令s=u^2,dv=sin\ udu,ds=2udu,v=-cos\ u,得\\\\ &\ \ \ \ \ \ \ \ \ \ 2\int u^2sin\ udu=-2u^2cos\ u+4\int ucos\ udu,令s=u,dv=cos\ udu,ds=du,v=sin\ u,得\\\\ &\ \ \ \ \ \ \ \ \ \ -2u^2cos\ u+4\int ucos\ udu=-2u^2cos\ u+4usin\ u+4cos\ u+C=-2xcos\sqrt{x}+4\sqrt{x}sin\sqrt{x}+4cos\sqrt{x}+C\\\\ &\ \ (19)\ 设u=ln(1+x^2),则x=\sqrt{e^u-1},dx=\frac{e^udu}{2\sqrt{e^u-1}},得\\\\ &\ \ \ \ \ \ \ \ \ \ \int ln(1+x^2)dx=\frac{1}{2}\int \frac{ue^udu}{\sqrt{e^u-1}},令s=e^u-1,则u=ln(s+1),du=\frac{1}{s+1}ds,得\\\\ &\ \ \ \ \ \ \ \ \ \ \frac{1}{2}\int \frac{ue^udu}{\sqrt{e^u-1}}=\frac{1}{2}\int \frac{ln(s+1)}{\sqrt{s}}ds,令u=ln(s+1),dv=\frac{1}{\sqrt{s}}ds,则du=\frac{1}{s+1}ds,v=2\sqrt{s},得\\\\ &\ \ \ \ \ \ \ \ \ \ \frac{1}{2}\int \frac{ln(s+1)}{\sqrt{s}}ds=\sqrt{s}ln(s+1)-\int \frac{\sqrt{s}}{(\sqrt{s})^2+1}ds=\sqrt{s}ln(s+1)-\frac{1}{2}ln(s+1)+C=\\\\ &\ \ \ \ \ \ \ \ \ \ xln(x^2+1)-\frac{1}{2}ln(x^2+1)+C & \end{aligned}   (1) exexdx=e2x1exdx,设u=ex,则x=ln udx=u1du,得        e2x1exdx=u211du=(u+1)(u1)1du=2u11du2u+11du=        2ln u1∣2ln u+1∣+C=2ln ex+1ex1∣+C  (2) u=1x,则x=1udx=du,得        (1x)3xdx=u3u1du=u21duu31du=u1+2u21+C=2x24x+22x1+C  (3) a6x6x2dx=(a3)2(x3)2x2dx,设u=x3,则x=3x dx=33x2 1,得        (a3)2(x3)2x2dx=(a3)2u23u2 33x2 1du=31u2(a3)21du=31(2a31ln  u+a3ua3 +C)=          6a31ln  x3+a3x3a3 +C  (4) x+sin x1+cos xdx=x+sin x1d(x+sin x)=ln x+sin x+C  (5) u=ln x,则x=eudx=eudu,得xln ln xdx=ln udu,设t=ln u,则u=etdu=etdt,得        ln udu=tetdt,设s=tdv=etdt,则ds=dtv=et,得        tetdt=tetet+C=et(t1)+C=u(ln u1)+C=ln x(ln ln x1)+C  (6) u=sin x,则x=arcsin udx=1u2 1du,得        1+sin4 xsin xcos xdx=1+u4u1u2 1u2 1du=1+u4udu=211+(u2)21d(u2)=21arctan(sin2 x)+C  (7) tan4 xdx=tan2 x(sec2 x1)dx=tan2 xsec2 xdx(sec2 x1)dx=        tan2 xd(tan x)tan x+x=31tan3 xtan x+x+C  (8) sin xsin 2xsin 3xdx=sin x2sin xcos x(3sin x4sin3 x)dx=(6sin3 x8sin5 x)cos xdx        u=sin x,则x=arcsin udx=1u2 1du,得        (6sin3 x8sin5 x)cos xdx=(6u38u5)du=6u3du8u5du=        23u434u6+C=23sin4 x34sin6 x+C  (9) u=x3,则x=3x dx=33u2 1du,得        x(x6+4)dx=31u(u2+4)1du,设t=u2+4,则u=t4 du=2t4 1dt,得        31u(u2+4)1du=61t(t4)1dt=241(t41t1)dt=241t41d(t4)241t1dt=        241ln t4∣241ln t+C=41ln x241ln(x6+4)+C  (10) axa+x dx=a2x2 a+xdx=aa2x2 1dx+a2x2 xdx=          aarcsin ax21a2x2 1d(a2x2)=aarcsin axa2x2 +C  (11) u=x(1+x) ,则x=u2+41 21dx=u2+41 udu,得         x(1+x) dx=u2+41 1du=ln u+u2+41 +C=ln ∣2x(1+x) +2x+1∣+C  (12) xcos2 xdx=21(x+xcos 2x)dx=21xdx+41xcos 2xd(2x)=          41x2+41(xsin 2x21sin 2xd(2x))=41x2+41xsin 2x+81cos 2x+C  (13) a=0时,eaxcos bxdx=b1eaxcos bxd(bx),设u=eaxdv=cos bxd(bx)           du=aeaxdxv=sin bx,得           b1eaxcos bxd(bx)=b1eaxsin bxb2aeaxsin bxd(bx),设u=eaxdv=sin bxd(bx)           du=aeaxdxv=cos bx,得           b1eaxsin bxb2aeaxsin bxd(bx)=b1eaxsin bx+b2aeaxcos bxb2a2eaxcos bxdx,得           eaxcos bxdx=a2+b2eax(bsin bx+acos bx)+C           a=0时,eaxcos bxdx= bsin bx+Cb=0x+Cb=0  (14) u=1+ex ,则x=ln(u21)dx=u212udu,得           1+ex dx=2u211du=ln  u+aua +C=ln 1+ex +11+ex 1+C  (15) x=sec u,则x=arccos x1dx=sec utan udu,得           x2x21 dx=sec2 utan usec utan udu=cos udu=sin u+C=sin(arccos x1)+C=xx21 +C  (16) x=asin u (2π<u<2π),则a2x2 =acos udx=acos udu,得          (a2x2)25dx=a41sec4 udu=a41(tan2 u+1)d(tan u)=3a41tan3 u+a41tan u+C=          3a41[(a2x2)3 x3+a2x2 3x]+C  (17) x=tan u,则u=arctan xdx=sec2 udu,得          x41+x2 dx=tan4 u1+tan2 u sec2 udu=tan4 usec udu=cot3 ucsc udu=cot2 u(csc ucot u)du          s=cot2 udv=csc ucot udu,则ds=2cot ucsc2 uduv=csc u,得          cot2 u(csc ucot u)du=(csc ucot2 u+2csc3 ucot udu)=          (csc ucot2 u2csc2 u(csc ucot u)du)=(csc ucot2 u2csc2 ud(csc u))=           32csc3 ucsc ucot2 u+C=32x3(1+x2)3 x31+x2 +C  (18) u=x ,则x=u2dx=2udu,得          x sin x dx=2u2sin udu,令s=u2dv=sin ududs=2uduv=cos u,得          2u2sin udu=2u2cos u+4ucos udu,令s=udv=cos ududs=duv=sin u,得          2u2cos u+4ucos udu=2u2cos u+4usin u+4cos u+C=2xcosx +4x sinx +4cosx +C  (19) u=ln(1+x2),则x=eu1 dx=2eu1 eudu,得          ln(1+x2)dx=21eu1 ueudu,令s=eu1,则u=ln(s+1)du=s+11ds,得          21eu1 ueudu=21s ln(s+1)ds,令u=ln(s+1)dv=s 1ds,则du=s+11dsv=2s ,得          21s ln(s+1)ds=s ln(s+1)(s )2+1s ds=s ln(s+1)21ln(s+1)+C=          xln(x2+1)21ln(x2+1)+C