zl程序教程

您现在的位置是:首页 >  IT要闻

当前栏目

js手写面试题总结

2023-02-18 16:30:47 时间

手写 Promise

const PENDING = "pending";
const RESOLVED = "resolved";
const REJECTED = "rejected";

function MyPromise(fn) {
  // 保存初始化状态
  var self = this;

  // 初始化状态
  this.state = PENDING;

  // 用于保存 resolve 或者 rejected 传入的值
  this.value = null;

  // 用于保存 resolve 的回调函数
  this.resolvedCallbacks = [];

  // 用于保存 reject 的回调函数
  this.rejectedCallbacks = [];

  // 状态转变为 resolved 方法
  function resolve(value) {
    // 判断传入元素是否为 Promise 值,如果是,则状态改变必须等待前一个状态改变后再进行改变
    if (value instanceof MyPromise) {
      return value.then(resolve, reject);
    }

    // 保证代码的执行顺序为本轮事件循环的末尾
    setTimeout(() => {
      // 只有状态为 pending 时才能转变,
      if (self.state === PENDING) {
        // 修改状态
        self.state = RESOLVED;

        // 设置传入的值
        self.value = value;

        // 执行回调函数
        self.resolvedCallbacks.forEach(callback => {
          callback(value);
        });
      }
    }, 0);
  }

  // 状态转变为 rejected 方法
  function reject(value) {
    // 保证代码的执行顺序为本轮事件循环的末尾
    setTimeout(() => {
      // 只有状态为 pending 时才能转变
      if (self.state === PENDING) {
        // 修改状态
        self.state = REJECTED;

        // 设置传入的值
        self.value = value;

        // 执行回调函数
        self.rejectedCallbacks.forEach(callback => {
          callback(value);
        });
      }
    }, 0);
  }

  // 将两个方法传入函数执行
  try {
    fn(resolve, reject);
  } catch (e) {
    // 遇到错误时,捕获错误,执行 reject 函数
    reject(e);
  }
}

MyPromise.prototype.then = function(onResolved, onRejected) {
  // 首先判断两个参数是否为函数类型,因为这两个参数是可选参数
  onResolved =
    typeof onResolved === "function"
      ? onResolved
      : function(value) {
          return value;
        };

  onRejected =
    typeof onRejected === "function"
      ? onRejected
      : function(error) {
          throw error;
        };

  // 如果是等待状态,则将函数加入对应列表中
  if (this.state === PENDING) {
    this.resolvedCallbacks.push(onResolved);
    this.rejectedCallbacks.push(onRejected);
  }

  // 如果状态已经凝固,则直接执行对应状态的函数

  if (this.state === RESOLVED) {
    onResolved(this.value);
  }

  if (this.state === REJECTED) {
    onRejected(this.value);
  }
};

手写 call 函数

call 函数的实现步骤:

  1. 判断调用对象是否为函数,即使我们是定义在函数的原型上的,但是可能出现使用 call 等方式调用的情况。
  2. 判断传入上下文对象是否存在,如果不存在,则设置为 window 。
  3. 处理传入的参数,截取第一个参数后的所有参数。
  4. 将函数作为上下文对象的一个属性。
  5. 使用上下文对象来调用这个方法,并保存返回结果。
  6. 删除刚才新增的属性。
  7. 返回结果。
// call函数实现
Function.prototype.myCall = function(context) {
  // 判断调用对象
  if (typeof this !== "function") {
    console.error("type error");
  }
  // 获取参数
  let args = [...arguments].slice(1),
      result = null;
  // 判断 context 是否传入,如果未传入则设置为 window
  context = context || window;
  // 将调用函数设为对象的方法
  context.fn = this;
  // 调用函数
  result = context.fn(...args);
  // 将属性删除
  delete context.fn;
  return result;
};

实现节流函数(throttle)

节流函数原理:指频繁触发事件时,只会在指定的时间段内执行事件回调,即触发事件间隔大于等于指定的时间才会执行回调函数。总结起来就是: 事件,按照一段时间的间隔来进行触发

像dom的拖拽,如果用消抖的话,就会出现卡顿的感觉,因为只在停止的时候执行了一次,这个时候就应该用节流,在一定时间内多次执行,会流畅很多

手写简版

使用时间戳的节流函数会在第一次触发事件时立即执行,以后每过 wait 秒之后才执行一次,并且最后一次触发事件不会被执行

时间戳方式:

// func是用户传入需要防抖的函数
// wait是等待时间
const throttle = (func, wait = 50) => {
  // 上一次执行该函数的时间
  let lastTime = 0
  return function(...args) {
    // 当前时间
    let now = +new Date()
    // 将当前时间和上一次执行函数时间对比
    // 如果差值大于设置的等待时间就执行函数
    if (now - lastTime > wait) {
      lastTime = now
      func.apply(this, args)
    }
  }
}

setInterval(
  throttle(() => {
    console.log(1)
  }, 500),
  1
)

定时器方式:

使用定时器的节流函数在第一次触发时不会执行,而是在 delay 秒之后才执行,当最后一次停止触发后,还会再执行一次函数

function throttle(func, delay){
  var timer = null;
  returnfunction(){
    var context = this;
    var args = arguments;
    if(!timer){
      timer = setTimeout(function(){
        func.apply(context, args);
        timer = null;
      },delay);
    }
  }
}

适用场景:

  • DOM 元素的拖拽功能实现(mousemove
  • 搜索联想(keyup
  • 计算鼠标移动的距离(mousemove
  • Canvas 模拟画板功能(mousemove
  • 监听滚动事件判断是否到页面底部自动加载更多
  • 拖拽场景:固定时间内只执行一次,防止超高频次触发位置变动
  • 缩放场景:监控浏览器resize
  • 动画场景:避免短时间内多次触发动画引起性能问题

总结

  • 函数防抖 :将几次操作合并为一次操作进行。原理是维护一个计时器,规定在delay时间后触发函数,但是在delay时间内再次触发的话,就会取消之前的计时器而重新设置。这样一来,只有最后一次操作能被触发。
  • 函数节流 :使得一定时间内只触发一次函数。原理是通过判断是否到达一定时间来触发函数。

Array.prototype.forEach()

Array.prototype.forEach = function(callback, thisArg) {
  if (this == null) {
    throw new TypeError('this is null or not defined');
  }
  if (typeof callback !== "function") {
    throw new TypeError(callback + ' is not a function');
  }
  const O = Object(this);
  const len = O.length >>> 0;
  let k = 0;
  while (k < len) {
    if (k in O) {
      callback.call(thisArg, O[k], k, O);
    }
    k++;
  }
}

Promise.race

Promise.race = function(promiseArr) {
  return new Promise((resolve, reject) => {
    promiseArr.forEach(p => {
      // 如果不是Promise实例需要转化为Promise实例
      Promise.resolve(p).then(
        val => resolve(val),
        err => reject(err),
      )
    })
  })
}

实现非负大整数相加

JavaScript对数值有范围的限制,限制如下:

Number.MAX_VALUE // 1.7976931348623157e+308
Number.MAX_SAFE_INTEGER // 9007199254740991
Number.MIN_VALUE // 5e-324
Number.MIN_SAFE_INTEGER // -9007199254740991

如果想要对一个超大的整数(> Number.MAX_SAFE_INTEGER)进行加法运算,但是又想输出一般形式,那么使用 + 是无法达到的,一旦数字超过 Number.MAX_SAFE_INTEGER 数字会被立即转换为科学计数法,并且数字精度相比以前将会有误差。

实现一个算法进行大数的相加:

function sumBigNumber(a, b) {
  let res = '';
  let temp = 0;

  a = a.split('');
  b = b.split('');

  while (a.length || b.length || temp) {
    temp += ~~a.pop() + ~~b.pop();
    res = (temp % 10) + res;
    temp  = temp > 9
  }
  return res.replace(/^0+/, '');
}

其主要的思路如下:

  • 首先用字符串的方式来保存大数,这样数字在数学表示上就不会发生变化
  • 初始化res,temp来保存中间的计算结果,并将两个字符串转化为数组,以便进行每一位的加法运算
  • 将两个数组的对应的位进行相加,两个数相加的结果可能大于10,所以可能要仅为,对10进行取余操作,将结果保存在当前位
  • 判断当前位是否大于9,也就是是否会进位,若是则将temp赋值为true,因为在加法运算中,true会自动隐式转化为1,以便于下一次相加
  • 重复上述操作,直至计算结束

参考 前端进阶面试题详细解答

JSONP

script标签不遵循同源协议,可以用来进行跨域请求,优点就是兼容性好但仅限于GET请求

const jsonp = ({ url, params, callbackName }) => {
  const generateUrl = () => {
    let dataSrc = '';
    for (let key in params) {
      if (Object.prototype.hasOwnProperty.call(params, key)) {
        dataSrc += `${key}=${params[key]}&`;
      }
    }
    dataSrc += `callback=${callbackName}`;
    return `${url}?${dataSrc}`;
  }
  return new Promise((resolve, reject) => {
    const scriptEle = document.createElement('script');
    scriptEle.src = generateUrl();
    document.body.appendChild(scriptEle);
    window[callbackName] = data => {
      resolve(data);
      document.removeChild(scriptEle);
    }
  })
}

实现一个call

call做了什么:

  • 将函数设为对象的属性
  • 执行&删除这个函数
  • 指定this到函数并传入给定参数执行函数
  • 如果不传入参数,默认指向为 window
// 模拟 call bar.mycall(null);
//实现一个call方法:
Function.prototype.myCall = function(context) {
  //此处没有考虑context非object情况
  context.fn = this;
  let args = [];
  for (let i = 1, len = arguments.length; i < len; i++) {
    args.push(arguments[i]);
  }
  context.fn(...args);
  let result = context.fn(...args);
  delete context.fn;
  return result;
};

使用Promise封装AJAX请求

// promise 封装实现:
function getJSON(url) {
  // 创建一个 promise 对象
  let promise = new Promise(function(resolve, reject) {
    let xhr = new XMLHttpRequest();
    // 新建一个 http 请求
    xhr.open("GET", url, true);
    // 设置状态的监听函数
    xhr.onreadystatechange = function() {
      if (this.readyState !== 4) return;
      // 当请求成功或失败时,改变 promise 的状态
      if (this.status === 200) {
        resolve(this.response);
      } else {
        reject(new Error(this.statusText));
      }
    };
    // 设置错误监听函数
    xhr.onerror = function() {
      reject(new Error(this.statusText));
    };
    // 设置响应的数据类型
    xhr.responseType = "json";
    // 设置请求头信息
    xhr.setRequestHeader("Accept", "application/json");
    // 发送 http 请求
    xhr.send(null);
  });
  return promise;
}

实现一个管理本地缓存过期的函数

封装一个可以设置过期时间的localStorage存储函数

class Storage{
  constructor(name){
      this.name = 'storage';
  }
  //设置缓存
  setItem(params){
      let obj = {
          name:'', // 存入数据  属性
          value:'',// 属性值
          expires:"", // 过期时间
          startTime:new Date().getTime()//记录何时将值存入缓存,毫秒级
      }
      let options = {};
      //将obj和传进来的params合并
      Object.assign(options,obj,params);
      if(options.expires){
      //如果options.expires设置了的话
      //以options.name为key,options为值放进去
          localStorage.setItem(options.name,JSON.stringify(options));
      }else{
      //如果options.expires没有设置,就判断一下value的类型
          let type = Object.prototype.toString.call(options.value);
          //如果value是对象或者数组对象的类型,就先用JSON.stringify转一下,再存进去
          if(Object.prototype.toString.call(options.value) == '[object Object]'){
              options.value = JSON.stringify(options.value);
          }
          if(Object.prototype.toString.call(options.value) == '[object Array]'){
              options.value = JSON.stringify(options.value);
          }
          localStorage.setItem(options.name,options.value);
      }
  }
  //拿到缓存
  getItem(name){
      let item = localStorage.getItem(name);
      //先将拿到的试着进行json转为对象的形式
      try{
          item = JSON.parse(item);
      }catch(error){
      //如果不行就不是json的字符串,就直接返回
          item = item;
      }
      //如果有startTime的值,说明设置了失效时间
      if(item.startTime){
          let date = new Date().getTime();
          //何时将值取出减去刚存入的时间,与item.expires比较,如果大于就是过期了,如果小于或等于就还没过期
          if(date - item.startTime > item.expires){
          //缓存过期,清除缓存,返回false
              localStorage.removeItem(name);
              return false;
          }else{
          //缓存未过期,返回值
              return item.value;
          }
      }else{
      //如果没有设置失效时间,直接返回值
          return item;
      }
  }
  //移出缓存
  removeItem(name){
      localStorage.removeItem(name);
  }
  //移出全部缓存
  clear(){
      localStorage.clear();
  }
}

用法

let storage = new Storage();
storage.setItem({
  name:"name",
  value:"ppp"
})

下面我把值取出来

let value = storage.getItem('name');
console.log('我是value',value);

设置5秒过期

let storage = new Storage();
storage.setItem({
  name:"name",
  value:"ppp",
  expires: 5000
})
// 过期后再取出来会变为 false
let value = storage.getItem('name');
console.log('我是value',value);

实现一个JS函数柯里化

预先处理的思想,利用闭包的机制柯里化的定义:接收一部分参数,返回一个函数接收剩余参数,接收足够参数后,执行原函数 函数柯里化的主要作用和特点就是参数复用提前返回延迟执行

  • 柯里化把多次传入的参数合并,柯里化是一个高阶函数
  • 每次都返回一个新函数
  • 每次入参都是一个

当柯里化函数接收到足够参数后,就会执行原函数,如何去确定何时达到足够的参数呢?

有两种思路:

  • 通过函数的 length 属性,获取函数的形参个数,形参的个数就是所需的参数个数
  • 在调用柯里化工具函数时,手动指定所需的参数个数

将这两点结合一下,实现一个简单 curry 函数

通用版

// 写法1
function curry(fn, args) {
  var length = fn.length;
  var args = args || [];
  return function(){
      newArgs = args.concat(Array.prototype.slice.call(arguments));
      if (newArgs.length < length) {
          return curry.call(this,fn,newArgs);
      }else{
          return fn.apply(this,newArgs);
      }
  }
}
// 写法2
// 分批传入参数
// redux 源码的compose也是用了类似柯里化的操作
const curry = (fn, arr = []) => {// arr就是我们要收集每次调用时传入的参数
  let len = fn.length; // 函数的长度,就是参数的个数

  return function(...args) {
    let newArgs = [...arr, ...args] // 收集每次传入的参数

    // 如果传入的参数个数等于我们指定的函数参数个数,就执行指定的真正函数
    if(newArgs.length === len) {
      return fn(...newArgs)
    } else {
      // 递归收集参数
      return curry(fn, newArgs)
    }
  }
}
// 测试
function multiFn(a, b, c) {
  return a * b * c;
}

var multi = curry(multiFn);

multi(2)(3)(4);
multi(2,3,4);
multi(2)(3,4);
multi(2,3)(4)

ES6写法

const curry = (fn, arr = []) => (...args) => (
  arg => arg.length === fn.length
    ? fn(...arg)
    : curry(fn, arg)
)([...arr, ...args])
// 测试
let curryTest=curry((a,b,c,d)=>a+b+c+d)
curryTest(1,2,3)(4) //返回10
curryTest(1,2)(4)(3) //返回10
curryTest(1,2)(3,4) //返回10
// 柯里化求值
// 指定的函数
function sum(a,b,c,d,e) {
  return a + b + c + d + e
}

// 传入指定的函数,执行一次
let newSum = curry(sum)

// 柯里化 每次入参都是一个参数
newSum(1)(2)(3)(4)(5)

// 偏函数
newSum(1)(2)(3,4,5)
// 柯里化简单应用
// 判断类型,参数多少个,就执行多少次收集
function isType(type, val) {
  return Object.prototype.toString.call(val) === `[object ${type}]`
}

let newType = curry(isType)

// 相当于把函数参数一个个传了,把第一次先缓存起来
let isString = newType('String')
let isNumber = newType('Number')

isString('hello world')
isNumber(999)

实现每隔一秒打印 1,2,3,4

// 使用闭包实现
for (var i = 0; i < 5; i++) {
  (function(i) {
    setTimeout(function() {
      console.log(i);
    }, i * 1000);
  })(i);
}
// 使用 let 块级作用域
for (let i = 0; i < 5; i++) {
  setTimeout(function() {
    console.log(i);
  }, i * 1000);
}

版本号排序的方法

题目描述:有一组版本号如下 ['0.1.1', '2.3.3', '0.302.1', '4.2', '4.3.5', '4.3.4.5']。现在需要对其进行排序,排序的结果为 ['4.3.5','4.3.4.5','2.3.3','0.302.1','0.1.1']

arr.sort((a, b) => {
  let i = 0;
  const arr1 = a.split(".");
  const arr2 = b.split(".");

  while (true) {
    const s1 = arr1[i];
    const s2 = arr2[i];
    i++;
    if (s1 === undefined || s2 === undefined) {
      return arr2.length - arr1.length;
    }

    if (s1 === s2) continue;

    return s2 - s1;
  }
});
console.log(arr);

二叉树深度遍历

// 二叉树深度遍历

class Node {
  constructor(element, parent) {
    this.parent = parent // 父节点 
    this.element = element // 当前存储内容
    this.left = null // 左子树
    this.right = null // 右子树
  }
}

class BST {
  constructor(compare) {
    this.root = null // 树根
    this.size = 0 // 树中的节点个数

    this.compare = compare || this.compare
  }
  compare(a,b) {
    return a - b
  }
  add(element) {
    if(this.root === null) {
      this.root = new Node(element, null)
      this.size++
      return
    }
    // 获取根节点 用当前添加的进行判断 放左边还是放右边
    let currentNode = this.root 
    let compare
    let parent = null 
    while (currentNode) {
      compare = this.compare(element, currentNode.element)
      parent = currentNode // 先将父亲保存起来
      // currentNode要不停的变化
      if(compare > 0) {
        currentNode = currentNode.right
      } else if(compare < 0) {
        currentNode = currentNode.left
      } else {
        currentNode.element = element // 相等时 先覆盖后续处理
      }
    }

    let newNode = new Node(element, parent)
    if(compare > 0) {
      parent.right = newNode
    } else if(compare < 0) {
      parent.left = newNode
    }

    this.size++
  }
  // 前序遍历
  preorderTraversal(visitor) {
    const traversal = node=>{
      if(node === null) return 
      visitor.visit(node.element)
      traversal(node.left)
      traversal(node.right)
    }
    traversal(this.root)
  }
  // 中序遍历
  inorderTraversal(visitor) {
    const traversal = node=>{
      if(node === null) return 
      traversal(node.left)
      visitor.visit(node.element)
      traversal(node.right)
    }
    traversal(this.root)
  }
  // 后序遍历
  posterorderTraversal(visitor) {
    const traversal = node=>{
      if(node === null) return 
      traversal(node.left)
      traversal(node.right)
      visitor.visit(node.element)
    }
    traversal(this.root)
  }
  // 反转二叉树:无论先序、中序、后序、层级都可以反转
  invertTree() {
    const traversal = node=>{
      if(node === null) return 
      let temp = node.left 
      node.left = node.right 
      node.right = temp
      traversal(node.left)
      traversal(node.right)
    }
    traversal(this.root)
    return this.root
  }
}

先序遍历

二叉树的遍历方式

// 测试
var bst = new BST((a,b)=>a.age-b.age) // 模拟sort方法

bst.add({age: 10})
bst.add({age: 8})
bst.add({age:19})
bst.add({age:6})
bst.add({age: 15})
bst.add({age: 22})
bst.add({age: 20})

// 先序遍历
// console.log(bst.preorderTraversal(),'先序遍历')
// console.log(bst.inorderTraversal(),'中序遍历')
// ![](http://img-repo.poetries.top/images/20210522214837.png)
// console.log(bst.posterorderTraversal(),'后序遍历')


// 深度遍历:先序遍历、中序遍历、后续遍历
// 广度遍历:层次遍历(同层级遍历)
// 都可拿到树中的节点

// 使用访问者模式
class Visitor {
  constructor() {
    this.visit = function (elem) {
      elem.age = elem.age*2
    }
  }
}

// bst.posterorderTraversal({
//   visit(elem) {
//     elem.age = elem.age*10
//   }
// })

// 不能通过索引操作 拿到节点去操作
// bst.posterorderTraversal(new Visitor())

console.log(bst.invertTree(),'反转二叉树')

查找字符串中出现最多的字符和个数

例: abbcccddddd -> 字符最多的是d,出现了5次

let str = "abcabcabcbbccccc";
let num = 0;
let char = '';

 // 使其按照一定的次序排列
str = str.split('').sort().join('');
// "aaabbbbbcccccccc"

// 定义正则表达式
let re = /(\w)\1+/g;
str.replace(re,($0,$1) => {
    if(num < $0.length){
        num = $0.length;
        char = $1;        
    }
});
console.log(`字符最多的是${char},出现了${num}次`);

封装异步的fetch,使用async await方式来使用

(async () => {
    class HttpRequestUtil {
        async get(url) {
            const res = await fetch(url);
            const data = await res.json();
            return data;
        }
        async post(url, data) {
            const res = await fetch(url, {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json'
                },
                body: JSON.stringify(data)
            });
            const result = await res.json();
            return result;
        }
        async put(url, data) {
            const res = await fetch(url, {
                method: 'PUT',
                headers: {
                    'Content-Type': 'application/json'
                },
                data: JSON.stringify(data)
            });
            const result = await res.json();
            return result;
        }
        async delete(url, data) {
            const res = await fetch(url, {
                method: 'DELETE',
                headers: {
                    'Content-Type': 'application/json'
                },
                data: JSON.stringify(data)
            });
            const result = await res.json();
            return result;
        }
    }
    const httpRequestUtil = new HttpRequestUtil();
    const res = await httpRequestUtil.get('http://golderbrother.cn/');
    console.log(res);
})();

实现数组的乱序输出

主要的实现思路就是:

  • 取出数组的第一个元素,随机产生一个索引值,将该第一个元素和这个索引对应的元素进行交换。
  • 第二次取出数据数组第二个元素,随机产生一个除了索引为1的之外的索引值,并将第二个元素与该索引值对应的元素进行交换
  • 按照上面的规律执行,直到遍历完成
var arr = [1,2,3,4,5,6,7,8,9,10];
for (var i = 0; i < arr.length; i++) {
  const randomIndex = Math.round(Math.random() * (arr.length - 1 - i)) + i;
  [arr[i], arr[randomIndex]] = [arr[randomIndex], arr[i]];
}
console.log(arr)

还有一方法就是倒序遍历:

var arr = [1,2,3,4,5,6,7,8,9,10];
let length = arr.length,
    randomIndex,
    temp;
  while (length) {
    randomIndex = Math.floor(Math.random() * length--);
    temp = arr[length];
    arr[length] = arr[randomIndex];
    arr[randomIndex] = temp;
  }
console.log(arr)

验证是否是邮箱

function isEmail(email) {
    var regx = /^([a-zA-Z0-9_\-])+@([a-zA-Z0-9_\-])+(\.[a-zA-Z0-9_\-])+$/;
    return regx.test(email);
}

实现有并行限制的 Promise 调度器

题目描述:JS 实现一个带并发限制的异步调度器 Scheduler,保证同时运行的任务最多有两个

addTask(1000,"1");
 addTask(500,"2");
 addTask(300,"3");
 addTask(400,"4");
 的输出顺序是:2 3 1 4

 整个的完整执行流程:

一开始1、2两个任务开始执行
500ms时,2任务执行完毕,输出2,任务3开始执行
800ms时,3任务执行完毕,输出3,任务4开始执行
1000ms时,1任务执行完毕,输出1,此时只剩下4任务在执行
1200ms时,4任务执行完毕,输出4

实现代码如下:

class Scheduler {
  constructor(limit) {
    this.queue = [];
    this.maxCount = limit;
    this.runCounts = 0;
  }
  add(time, order) {
    const promiseCreator = () => {
      return new Promise((resolve, reject) => {
        setTimeout(() => {
          console.log(order);
          resolve();
        }, time);
      });
    };
    this.queue.push(promiseCreator);
  }
  taskStart() {
    for (let i = 0; i < this.maxCount; i++) {
      this.request();
    }
  }
  request() {
    if (!this.queue || !this.queue.length || this.runCounts >= this.maxCount) {
      return;
    }
    this.runCounts++;
    this.queue
      .shift()()
      .then(() => {
        this.runCounts--;
        this.request();
      });
  }
}
const scheduler = new Scheduler(2);
const addTask = (time, order) => {
  scheduler.add(time, order);
};
addTask(1000, "1");
addTask(500, "2");
addTask(300, "3");
addTask(400, "4");
scheduler.taskStart();

对象数组列表转成树形结构(处理菜单)

[
    {
        id: 1,
        text: '节点1',
        parentId: 0 //这里用0表示为顶级节点
    },
    {
        id: 2,
        text: '节点1_1',
        parentId: 1 //通过这个字段来确定子父级
    }
    ...
]

转成
[
    {
        id: 1,
        text: '节点1',
        parentId: 0,
        children: [
            {
                id:2,
                text: '节点1_1',
                parentId:1
            }
        ]
    }
]

实现代码如下:

function listToTree(data) {
  let temp = {};
  let treeData = [];
  for (let i = 0; i < data.length; i++) {
    temp[data[i].id] = data[i];
  }
  for (let i in temp) {
    if (+temp[i].parentId != 0) {
      if (!temp[temp[i].parentId].children) {
        temp[temp[i].parentId].children = [];
      }
      temp[temp[i].parentId].children.push(temp[i]);
    } else {
      treeData.push(temp[i]);
    }
  }
  return treeData;
}