zl程序教程

您现在的位置是:首页 >  其他

当前栏目

Bayesian Extraction of Jet Energy Loss Distributions in Heavy-Ion Collisions

2023-03-14 22:55:55 时间

1.问题

根据统计学模型来拟和[alpha,beta,gamma]这三个参数,在这里使用的是贝叶斯分析方法以及MCMC方法来作为模型。我们假设这三个参数的先验分布为均匀分布,介质能量损失为均匀分布。


2.工作流程


1数据准备

2模型构造

3拟和模型

4得出拟和参数

具体的过程在代码会非常清晰明了。

import numpy as np
import matplotlib.pyplot as plt
import pymc3 as pm
from pymc3 import Uniform, Normal
from scipy.special import gamma
from scipy.interpolate import interp1d
from scipy import optimize

def read_data():   //读取数据
    dat = np.loadtxt("./RAA_2760.txt")
    return dat[:,0],dat[:,1]

pp_x,pp_y = read_data()
gala30x = np.array([
0.047407180540804851462, 0.249923916753160223994,
0.614833454392768284613, 1.143195825666100798284,
1.836454554622572291486, 2.69652187455721519578,
3.72581450777950894932, 4.92729376584988240966,
6.304515590965074522826, 7.861693293370260468756,
9.603775985479262079849, 11.5365465979561397008,
13.6667446930642362949, 16.00222118898106625462,
18.55213484014315012403, 21.32720432178312892793,
24.34003576453269340098, 27.60555479678096102758,
31.14158670111123581829, 34.96965200824906954359,
39.11608494906788912192, 43.61365290848482780666,
48.50398616380420042732, 53.84138540650750561747,
59.69912185923549547712, 66.18061779443848965169,
73.44123859555988223951, 81.73681050672768572223,
91.5564665225368382555, 104.1575244310588945118
])
gala30w = np.array([
0.121677895367261782329, 0.283556882734938525493,
0.446432426678773424704, 0.610532130075812839931,
0.77630347862220587813, 0.944233288641719426021,
1.11484470167521153566, 1.288705432832675646608,
1.466439137624214862, 1.64873949785431911827,
1.83638767787041103674, 2.03027425167718247131,
2.23142718244322451682, 2.44104811309112149776,
2.66056024337508997273, 2.89167264137737623469,
3.13646833382438459, 3.3975275957906408941,
3.67810472956067256012, 3.9823886239009637486,
4.315899244899456113557, 4.686114009126298021,
5.1035026514834184093, 5.58333298168755125349,
6.1490444086574353235, 6.8391305457947582711,
7.7229478770061872416, 8.9437424683710389523,
10.87187293837791147282, 15.026111628122932986
])

class RAA2ELoss():    
    def __init__(self,RAA_fname,pp_pt=None,pp_spectra=None):
        self.with_ppdata = False
        if not(pp_pt is None or pp_spectra is None):
            self.pp_fit = interp1d(pp_pt,pp_spectra,fill_value="extrapolate")
            self.with_ppdata = True
        RAA_data = np.loadtxt(RAA_fname)
        self.RAA_x = RAA_data[:,0]
        self.RAA_xerr = RAA_data[:,1]
        self.RAA_y = RAA_data[:,2]
        self.RAA_yerr = RAA_data[:,3]
    def mean_ptloss(self, pt, b, c):
        return b*pt**c*np.log(pt)
    def model(self):
        with pm.Model() as basic_model:
            a = Uniform('a', lower=0, upper=10)
            b = Uniform('b', lower=0, upper=10)
            c = Uniform('c', lower=0, upper=1)
            
            intg_res = np.zeros_like(self.RAA_x)
            for i, x in enumerate(gala30x):
                
                scale_fct = self.RAA_x / gala30x[-1]
                x = x * scale_fct
                shifted_pt = self.RAA_x + x
                mean_dpt = self.mean_ptloss(shifted_pt, b, c)
                alpha = a
                beta = a / mean_dpt
                pdpt = (beta**(alpha) / (alpha)) * np.exp(-beta*x) * x**(alpha-1)
              
                intg_res += scale_fct*gala30w[i]*pdpt*self.pp_fit(shifted_pt)
               #上面两行代码不是很懂
            mu = intg_res / self.pp_fit(self.RAA_x)
            likelihood_y = Normal('likelihood_y', mu=mu, observed=self.RAA_y)
            start = pm.find_MAP(fmin=optimize.fmin_powell)
            step = pm.Metropolis()
            trace = pm.sample(1200,start=start,step=step)

ps: 代码和数据参考github,他上面的pymc的版本是1,如果使用pymc3的话将会报错。

该GitHub的流程图。省略了画图与保存数据的部分。

1.png

公众号:FPGA之旅